昆博公文网
当前位置 首页 >专题范文 > 公文范文 >

2022小学六年级数学知识点及复习提纲

发布时间:2022-12-08 13:05:04 来源:网友投稿

下面是小编为大家整理的2022小学六年级数学知识点及复习提纲,供大家参考。

2022小学六年级数学知识点及复习提纲

数学是人类对事物的抽象结构与模式进行严格描述、推导的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。下面小编为大家带来小学六年级数学知识点及复习提纲,希望大家喜欢!

小学六年级数学知识点

分数乘法知识点

(一)分数乘法意义:

1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

“分数乘整数”指的是第二个因数必须是整数,不能是分数。

2、一个数乘分数的意义就是求一个数的几分之几是多少。

“一个数乘分数”指的是第二个因数必须是分数,不能是整数。(第一个因数是什么都可以)

(二)分数乘法计算法则:

1、分数乘整数的运算法则是:分子与整数相乘,分母不变。

(1)为了计算简便能约分的可先约分再计算。(整数和分母约分)(2)约分是用整数和下面的分母约掉公因数。(整数千万不能与分母相乘,计算结果必须是最简分数)。

2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。(分子乘分子,分母乘分母)

(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。

(2)分数化简的方法是:分子、分母同时除以它们的公因数。

(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。

(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。

(三)积与因数的关系:

一个数(0除外)乘大于1的数,积大于这个数。a×b=c,当b >1时,c>a。

一个数(0除外)乘小于1的数,积小于这个数。a×b=c,当b<1时,c<a(b≠0)。< p="">

一个数(0除外)乘等于1的数,积等于这个数。a×b=c,当b =1时,c=a 。

在进行因数与积的大小比较时,要注意因数为0时的特殊情况。

(四)分数乘法混合运算

1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。

2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。

乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)

乘法分配律:a×(b±c)=a×b±a×c

(五)倒数的意义:乘积为1的两个数互为倒数。

1、倒数是两个数的关系,它们互相依存,不能单独存在。单独一个数不能称为倒数。(必须说清谁是谁的倒数)

2、判断两个数是否互为倒数的标准是:两数相乘的积是否为“1”。例如:a×b=1则a、b互为倒数。

3、求倒数的方法:

①求分数的倒数:交换分子、分母的位置。

②求整数的倒数:整数分之1。

③求带分数的倒数:先化成假分数,再求倒数。

④求小数的倒数:先化成分数再求倒数。

4、1的倒数是它本身,因为1×1=1

0没有倒数,因为任何数乘0积都是0,且0不能作分母。

5、真分数的倒数是假分数,真分数的倒数大于1,也大于它本身。

假分数的倒数小于或等于1。带分数的倒数小于1。

(六)分数乘法应用题——用分数乘法解决问题

1、求一个数的几分之几是多少?(用乘法)

已知单位“1”的量,求单位“1”的量的几分之几是多少,用单位“1”的量与分数相乘。

2、巧找单位“1”的量:在含有分数(分率)的语句中,分率前面的量就是单位“1”对应的量,或者“占”“是”“比”字后面的量是单位“1”。

3、什么是速度?

速度是单位时间内行驶的路程。

速度=路程÷时间时间=路程÷速度路程=速度×时间

单位时间指的是1小时1分钟1秒等这样的大小为1的时间单位,每分钟、每小时、每秒钟等。

4、求甲比乙多(少)几分之几?

多:(甲-乙)÷乙少:(乙-甲)÷乙

数与代数知识点

一、分数乘法

(一)分数乘法的计算法则:

1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分)

2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。

3、为了计算简便,能约分的要先约分,再计算。

注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

(二)规律:(乘法中比较大小时)

一个数(0除外)乘大于1的数,积大于这个数。

一个数(0除外)乘小于1的数(0除外),积小于这个数。

一个数(0除外)乘1,积等于这个数。

(三)分数混合运算的运算顺序和整数的运算顺序相同。

(四)整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。

乘法交换律:a×b=b×a

乘法结合律:(a×b)×c=a×(b×c)

乘法分配律:(a+b)×c=ac+bc ac+bc=(a+b)×c

二、分数乘法的解决问题(详细见重难点分解)

(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)

1、找单位“1”:在分率句中分率的前面;或“占”、“是”、“比”的后面

2、求一个数的几倍:一个数×几倍;求一个数的几分之几是多少:一个数× 。

3、写数量关系式技巧:

(1)“的”相当于“×”(乘号)

“占”、“是”、“比”“相当于”相当于“=”(等号)

(2)分率前是“的”:

单位“1”的量×分率=分率对应量

(3)分率前是“多或少”的意思:

单位“1”的量×(1±分率)=分率的对应量

二、分数除法

(一)倒数

1、倒数的意义:乘积是1的两个数互为倒数。

强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。(要说清谁是谁的倒数)。

2、求倒数的方法:(原数与倒数之间不要写等号哦)

(1)求分数的倒数:交换分子分母的位置。

(2)求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。

(3)求带分数的倒数:把带分数化为假分数,再求倒数。

(4)求小数的倒数:把小数化为分数,再求倒数。

3、因为1×1=1,1的倒数是1;

因为找不到与0相乘得1的数0没有倒数。

4、对于任意数a(a≠0),它的倒数为1/a;非零整数a的倒数为1/a;分数b/a的倒数是a/b;

5、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。

(二)分数除法

1、分数除法的意义:

分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。

2、分数除法的计算法则:除以一个不为0的数,等于乘这个数的倒数。

3、规律(分数除法比较大小时):

(1)当除数大于1,商小于被除数;

(2)当除数小于1(不等于0),商大于被除数;

(3)、当除数等于1,商等于被除数。

4、“[ ] ”叫做中括号。一个算式里,如果既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的。

(三)分数除法解决问题(详细见重难点分解)

(未知单位“1”的量(用除法):已知单位“1”的几分之几是多少,求单位“1”的量。

)

1、数量关系式和分数乘法解决问题中的关系式相同:

(1)分率前是“的”:

单位“1”的量×分率=分率对应量

(2)分率前是“多或少”的意思:

单位“1”的量×(1分率)=分率对应量

2、解法:(建议:用方程解答)

(1)方程:根据数量关系式设未知量为x,用方程解答。

(2)算术(用除法):分率对应量÷对应分率=单位“1”的量

3、求一个数是另一个数的几分之几:就用一个数÷另一个数

4、求一个数比另一个数多(少)几分之几:

①求多几分之几:大数÷小数– 1

②求少几分之几:1 -小数÷大数

或①求多几分之几(大数-小数)÷小数

②求少几分之几:(大数-小数)÷大数

(四)比和比的应用

1、比的意义:两个数相除又叫做两个数的比。

2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值(比值通常用分数表示,也可以用小数或整数表示)。

例如

15:10 = 15÷10=1.5

∶ ∶ ∶ ∶

前项比号后项比值

3、比可以表示两个相同量的关系,即倍数关系。也可以表示两个不同量的比,得到一个新量。

例:路程÷速度=时间。

4、区分比和比值

比:表示两个数的关系,可以写成比的形式,也可以用分数表示。

比值:相当于商,是一个数,可以是整数,分数,也可以是小数。

5、根据分数与除法的关系,两个数的比也可以写成分数形式。

6、比和除法、分数的联系:

7、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。

8、根据比与除法、分数的关系,可以理解比的后项不能为0。

体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。

(五)比的基本性质

1、根据比、除法、分数的关系:

商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。

分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。

比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。

3、根据比的基本性质,可以把比化成最简单的整数比。

4.化简比:

(1)用比的基本性质化简

①用比的前项和后项同时除以它们的`公因数。

②两个分数的比:用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。

③两个小数的比:向右移动小数点的位置,先化成整数比再化简。

(2)用求比值的方法。注意:最后结果要写成比的形式。

5.按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。

如:已知两个量之比为,则设这两个量分别为。

6、路程一定,速度比和时间比成反比。(如:路程相同,速度比是4:5,时间比则为5:4)

工作总量一定,工作效率和工作时间成反比。

(如:工作总量相同,工作时间比是3:2,工作效率比则是2:3)

三、百分数

(一)百分数的意义和写法

1、百分数的意义:表示一个数是另一个数的百分之几。

百分数是指的两个数的比,因此也叫百分率或百分比。

2、百分数和分数的主要联系与区别:

(1)联系:都可以表示两个量的倍比关系。

(2)区别:

①意义不同:百分数只表示两个数的倍比关系,不能表示具体的数量,所以不能带单位;

分数既可以表示具体的数,又可以表示两个数的关系,表示具本数时可以带单位。

②、百分数的分子可以是整数,也可以是小数;

分数的分子不能是小数,只能是除0以外的自然数。

3、百分数的写法:通常不写成分数形式,而在原来分子后面加上“%”来表示。

(二)百分数与小数的互化:

1、小数化成百分数:把小数点向右移动两位,同时在后面添上百分号。

2.百分数化成小数:把小数点向左移动两位,同时去掉百分号。

(三)百分数的和分数的互化

1、百分数化成分数:

先把百分数化成分数,先把百分数改写成分母是否100的分数,能约分要约成最简分数。

2、分数化成百分数:

①用分数的基本性质,把分数分母扩大或缩小成分母是100的分数,再写成百分数形式。

②先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。

(四)常见的分数与小数、百分数之间的互化

圆的面积知识

1、圆的面积:圆所占平面的大小叫做圆的面积。用字母S表示。

2、一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。顶点在圆心的角叫做圆心角。

3、圆面积公式的推导:

(1)、用逐渐逼近的转化思想:体现化圆为方,化曲为直;化新为旧,化未知为已知,化复杂为简单,化抽象为具体。

(2)、把一个圆等分(偶数份)成的扇形份数越多,拼成的图像越接近长方形。

(3)、拼出的图形与圆的周长和半径的关系。

4、环形的面积:

一个环形,外圆的半径是R,内圆的半径是r。(R=r+环的宽度.)

S环= πR2-πr2或

环形的面积公式:S环=π(R2-r2)。

5、一个圆,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。

而面积扩大或缩小的倍数是这倍数的平方倍。

例如:

在同一个圆里,半径扩大3倍,那么直径和周长就都扩大3倍,而面积扩大9倍。

6、两个圆:半径比=直径比=周长比;而面积比等于这比的平方。

例如:

两个圆的半径比是2∶3,那么这两个圆的直径比和周长比都是2∶3,而面积比是4∶9

7、任意一个正方形与它内切圆的面积之比都是一个固定值,即:4∶π

8、当长方形,正方形,圆的周长相等时,圆面积,正方形居中,长方形面积最小。反之,面积相同时,长方形的周长最长,正方形居中,圆周长最短。

9、确定起跑线:

(1)、每条跑道的长度=两个半圆形跑道合成的圆的周长+两个直道的长度。

(2)、每条跑道直道的长度都相等,而各圆周长决定每条跑道的总长度。(因此起跑线不同)

(3)、每相邻两个跑道相隔的距离是:2×π×跑道的宽度

(4)、当一个圆的半径增加a厘米时,它的周长就增加2πa厘米;当一个圆的直径增加a厘米时,它的周长就增加πa厘米。

10、常用各π值结果:

2π = 6.28 3π = 9.42

4π = 12.56 5π = 15.7

6π = 18.84 7π = 21.98

8π = 25.12 9π = 28.26

10π = 31.4 16π = 50.24

25π = 78.5 36π = 113.04

64π = 200.96 96π = 301.44

小学六年级数学复习提纲

一、算术

1、加法交换律:两数相加交换加数的位置,和不变。

2、加法结合律:a + b = b + a

3、乘法交换律:a × b = b × a

4、乘法结合律:a × b × c = a ×(b × c)

5、乘法分配律:a × b + a × c = a × b + c

6、除法的性质:a ÷ b ÷ c = a ÷(b × c)

7、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。

O除以任何不是O的数都得O。简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。

8、有余数的除法:
被除数=商×除数+余数

二、方程、代数与等式

等式:等号左边的数值与等号右边的数值相等的式子叫做等式。

等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。

方程式:含有未知数的等式叫方程式。

一元一次方程式:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。

代数:
代数就是用字母代替数。

代数式:用字母表示的式子叫做代数式。如:3x =ab+c

三、分数

分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。

分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。

分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。

分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。

分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。

倒数的概念:1.如果两个数乘积是1,我们称一个是另一个的倒数。这两个数互为倒数。1的倒数是1,0没有倒数。

分数除以整数(0除外),等于分数乘以这个整数的倒数。

分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小

分数的除法则:除以一个数(0除外),等于乘这个数的倒数。

真分数:分子比分母小的分数叫做真分数。

假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。

带分数:把假分数写成整数和真分数的形式,叫做带分数。

分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。

四、体积和表面积

三角形的面积=底×高÷2。

公式 S= a×h÷2

正方形的面积=边长×边长 公式 S= a2

长方形的面积=长×宽 公式 S= a×b

平行四边形的面积=底×高 公式 S= a×h

梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2

内角和:三角形的内角和=180度。

长方体的表面积=(长×宽+长×高+宽×高 ) ×2 公式:S=(a×b+a×c+b×c)×2

正方体的表面积=棱长×棱长×6 公式:
S=6a2

长方体的体积=长×宽×高 公式:V = abh

长方体(或正方体)的体积=底面积×高 公式:V = abh

正方体的体积=棱长×棱长×棱长 公式:V = a3

圆的周长=直径×π 公式:L=πd=2πr

圆的面积=半径×半径×π 公式:S=πr2

圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh

圆柱的表面积:圆柱的.表面积等于底面的周长乘高再加上两头的圆的面积。

公式:S=ch+2s=ch+2πr2

圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh

圆锥的体积=1/3底面×积高。公式:V=1/3Sh

五、数量关系计算公式

单价×数量=总价 2、单产量×数量=总产量

速度×时间=路程 4、工效×时间=工作总量

加数+加数=和 一个加数=和+另一个加数

被减数-减数=差 减数=被减数-差 被减数=减数+差

因数×因数=积 一个因数=积÷另一个因数

被除数÷除数=商 除数=被除数÷商 被除数=商×除数

更多推荐:

六年级数学复习要点归纳

小学奥数知识模块完整体系整合

点击下页继续查看

六、长度单位:

1公里=1千米 1千米=1000米

1米=10分米 1分米=10厘米 1厘米=10毫米

七、面积单位:

1平方千米=100公顷 1公顷=10000平方米

1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米

1亩=666.666平方米。

八、体积单位

1立方米=1000立方分米 1立方分米=1000立方厘米

1立方厘米=1000立方毫米

1升=1立方分米=1000毫升 1毫升=1立方厘米

九、重量单位

1吨=1000千克 1千克= 1000克= 1公斤= 1市斤

数学学习计划

1、按部就班:数学是环环相扣的一门学科,哪一个环节脱节都会影响整个学习的进程。所以,平时学习不应贪快,要一章一章过关,不要轻易留下自己不明白或者理解不深刻的问题。

2、强调理解:概念、定理、公式要在理解的基础上记忆。每新学一个定理,尝试先不看答案,做一次例题,看是否能正确运用新定理;若不行,则对照答案,加深对定理的理解。

3、基本训练:学习数学是不能缺少训练的,平时多做一些难度适中的练习,当然莫要陷入死钻难题的误区,要熟悉考试中的题型,训练要做到有的放矢。

4、重视平时考试出现的错误:订一个错题本,专门搜集自己的错题,这些往往就是自己的薄弱之处。复习时,这个错题本也就成了宝贵的复习资料。

推荐访问:知识点 提纲 复习 小学六年级数学知识点及复习提纲 小学六年级数学知识点及复习提纲 小学六年级数学知识点梳理

相关文章:

Top