昆博公文网
当前位置 首页 >专题范文 > 公文范文 >

2023年度《倒数认识》教学设计6篇(完整)

发布时间:2023-02-14 13:00:15 来源:网友投稿

下面是小编为大家整理的2022年度《倒数认识》教学设计6篇(完整),供大家参考。

2022年度《倒数认识》教学设计6篇(完整)

作为一名教师,往往需要进行教学设计编写工作,教学设计要遵循教学过程的基本规律,选择教学目标,以解决教什么的问题。如何把教学设计做到重点突出呢?为大家精心整理了《倒数的认识》教学设计6篇,在大家参照的同时,也可以分享一下给您最好的朋友。

《倒数的认识》教学设计 篇一

教学目标:

1、是学生通过探究活动,认识倒数的意义,掌握找倒数方法。

2、培养学生观察、归纳、推理和概括的能力。

教学过程

一、创设活动情景,引入概念。

出示例1的一组算式,开展小组活动:算一算,找一找,这组算式有什么特点?

小组汇报交流。(通过计算,发现每组算式的乘积都是1.通过观察发现相乘的两个分数的分子和分母的位置是颠倒的)

师:同学们发现了每组算式两个分数的分子与分母正好颠倒了位置,所以我们把这样的两个分数就做倒数。

让学生读一读:倒数。

出示倒数的意义:乘积是1的两个数互为倒数。

二、 探究讨论,深入理解。

让学生说说对到数意义的理解。

提问:互为是什么意思?(倒数是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数。)

判断下面的句子错在哪里?应该怎样叙述?

因为3/44/3=1,所以四分之三是倒数,三分之四也是倒数。

三、运用概念,探讨方法。

出示例2,找一找那两个数互为倒数?

汇报找的结果,并说一说怎样找到的?

1,看两个分数的乘积是不是1;

2,看两个分数的分子与分母是否分别颠倒了位置。

讨论一下这两种方法哪一种方法比较快?(第二种方法,可以直接观察得到。)

通过具体实例总结归纳找倒数的方法。

分子、分母交换位置

例:3/55∕3 3∕5的倒数是5∕3

(2)找倒数的倒数:先把整数看成分母是1的分数,在交换分子和分母的位置。

分子、分母交换位置

例:6=1∕6 6的倒数是1∕6.

四、出示特例,深入理解

看一看。例2中的那些数据没有找到倒数?(1,0)

提问:1和0有没有倒数?如果有,是多少?

小组讨论、汇报。

1、关于1的倒数。

因为11=1,根据乘积是1的两个数互为倒数,所以1的倒数是1. 交换分子、分母的位置

也可以这样推导:1= 1∕1=1,1的倒数是1.

2、关于0的倒数。

因为0与任何数相乘都不等于1,所以0没有倒数。

交换分子、分母的位置

也可以这样推导:0=0∕11∕0,分母不能为0,所以0没有倒数。

五、巩固练习

1、完成做一做,先独立做,再全班交流。

2、练习六第3题。

用多媒体或投影逐题出示,学生判断,并说明理由。

3、同桌进行互说倒数活动(练习六第2题)。

六、总结

今天学习了什么?

什么叫倒数?怎样找到一个数的倒数?

倒数的认识教学设计 篇二

教学目的:

1.使学生感知倒数的意义,掌握求倒数的方法,学会对倒数的正确表述。

2.培养学生的观察能力、数学语言表达能力、发现规律的能力等。

教学重点:求一个数的倒数的方法。

教学难点:理解倒数的意义,掌握求一个数的倒数的方法。

教学准备:教学光盘

课前研究:自学课本P50:

(1)什么是倒数?倒数的概念中哪几个字比较重要?说一说你是怎么理解的。

(2)观察互为倒数的两个数,说说他们分子、分母的位置发生了什么变化?

(3)0有倒数吗?为什么?

教学过程:

一、作业错例分析。

二、学习分数的倒数:

1、出示例7

学生在自备本上完成,指名核对。

教师板书: ×=1× =1× =1

2.你能模仿着再举几个例子吗?

学生回答,教师板书。

3.观察板书,揭示倒数意义:乘积是1的两个数互为倒数。(板书)

和 互为倒数,也可以说的倒数是 ,的倒数是。

让学生模仿着说另外两个算式,谁和谁互为倒数?谁是谁的倒数?

4.你能分别找出和的倒数吗?

学生同桌讨论找法,指名交流。

5.观察上面互为倒数的两个数,学生讨论怎样求一个分数的倒数?

指名交流方法:求一个分数的倒数时,只要把它的分子、分母调换位置就可以了。

6.合作练习:同桌两位同学一位说出一个分数,请另一位同学说这个分数的倒数,并交换练习。

三、学习整数的倒数:

1.电脑出示:5的倒数是多少?1的倒数呢?

学生跟自己的同桌说一说,再指名交流。

方法一:求5的倒数时,可以先把5看作,所以它的倒数是;

方法二:想5×( )=1,再得出结果。

2.那1的倒数是多少?(1)

3.0有倒数吗?为什么?(没有一个数与零相乘的积是1,所以0没有倒数)

4、 分数和整数(0除外)都有它的倒数,小数有没有倒数?你能发表自己的观点吗?

0.25 0.1 的倒数是多少?如何求的?

5、练一练 示范写 的倒数: 的倒数是 ,明确不能写成 =。

学生独立完成,集体核对。

四、巩固练习:

1.练习十第1题

学生独立完成后集体订正,说说思路及倒数的意义和求倒数的方法

2.练习十第2题

学生先独立找一找,再交流想法,注意说完整话。例:与4互为倒数。

3.练习十第3题

学生独立填空后集体订正。

4.练习十第4题

写出每组数的倒数。说说有什么发现?

第1组中都是真分数,倒数都是大于1的假分数。

第2组中都是大于1的假分数,倒数都是真分数。

第3组中都是一个分数的分数单位,倒数都是整数。

第4组中都是非0的自然数,倒数都是几分之一。

5.练习十第5题:

学生独立完成。说说怎样求正方体的表面积和体积。

6.练习十第6题

学生独立列式解答后,辨析。

两题中分数的不同意义:

第一题中的表示两个数量间的倍比关系,要用乘法计算。

第二题中的表示用去的吨数,求还剩多少吨,要用减法计算。

7.思考题

学生小组讨论,指名交流。

按钢管的长度分三种情况考虑:

(1)如果钢管的长度都是1米,那么两根钢管用去的一样多;

(2)如果钢管的长度小于1米,那么第一根用去的长度长一些;

(3)如果钢管的长度大于1米,那么第二根用去的长度长一些。

五、课堂总结:

今天我们学习了两个数之间的一种新的关系——倒数关系,谁再来说一说倒数是怎样定义的?怎样求一个数的倒数?1的倒数是多少?0有没有倒数?

倒数的认识教案 篇三

教材分析:

这部分内容是在学历了分数乘法的基础上教学的,主要为后面学习分数除法做准备,因为一个数除以分数的计算方法,归结为乘这个数的倒数。这部分内容通过两个例题,主要教学倒数的意义和求倒数的方法。

设计理念:

本课强调从学生的学习兴趣,生活经验和认知水平出发,通过体验、实践、参与、交流和合作方式,让学生在合作学习的过程中,学会交流,相互评价,亲历知识的建构过程,培养学生的数学应用意识和激发学习热情,培养学生观察、归纳、推理和概括的能力。

教学目标:

认知目标:使学生通过探究活动,认识倒数的意义,掌握找倒数的方法。

能力目标:培养学生观察、归纳、猜想、推理和概括的能力。

情感目标:提供适当的问题情境,激发学生的学习兴趣和学习热情。让学生体验探索中成功的快乐,培养学生的创新意识和科学精神。

教学重点:

使学生通过探究活动,认识倒数的意义,掌握找倒数的方法。

教学难点:

使学生通过探究活动,认识倒数的意义,掌握找倒数的方法。

教学过程:

一、 创设活动情景,引入概念

师:我们刚刚学习了分数的乘法,老师想考考大家掌握的怎么样,能不能经受住老师的考验?

生(众):能!

师:好!(出示投影)请把下面的几个题目算一算,同位相互交换一下答案。

题目:3/8x8/3 7/15x15/7 5x1/5 1/12x12

生:进行计算。(完成后小组进行交流,学生汇报其发现的结论)

(通过计算,学生可能发现每组算式的乘积都是1,通过观察发现相乘的两个分数的分子和分母位置是颠倒的)

师:同学们发现了每组算式的两个分数的分子与分母正好颠倒了位置,所以我们把这样的两个分数叫做倒数。

出示倒数的意义:乘积是1的两个数互为倒数。

二、 探索研究,深入理解

师:同学们能不能说说你对倒数的意义的理解?

提示:“互为”是什么意思?

生:指的是倒数表示两个数之间的关系,这两个数缺一不可,互相依存,单独的一个数不能叫倒数。

师:回答的很好,下面同学们来判断一下我说的话有没有错误:因为3/4x4/3=1,所以3/4是倒数,4/3也是倒数。

生:(争先恐后地)不对!

师:那我该怎么说呢?

生:3/4和4/3互为倒数。

师:还有其他的说法吗?

生:3/4是4/3的倒数,4/3是3/4的倒数。

师:好,大家说的都不错,那么我给你一个数你能找出它的倒数吗?

生:能!

师:好!我我来考考大家!

三、 运用概念,探讨方法

师:(投影,出示例2)

3/5 6 7/2 5/3 1/6 1 2/7 0

找一找,下面的哪两个数互为倒数?

(小组探讨交流,并说说是怎样找的?汇报交流结果。)

生:有两种方法来找一个数的倒数:

1、看看两个分数的乘积是不是1;

2、看两个分数的分子与分母是否分别颠倒了位置。

师:(征求意见)大家同意他的说法吗?

生:同意!

师:大家认为哪一种方法更快呢?

生:第二种。

师:好,那咱们就用第二种来求一个数的倒数。(板演方法,强化学生的理解。)

四、 出示特例,深入理解

师:同学们再观察一下刚才我们做的题目,还有没有没找到倒数的数据?

生:有!1和0。

师:(提问)那1和0有没有倒数呢?如果有,是多少?

小组讨论、汇报。

1、 关于1的倒数。

因为1x1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。

2、 关于0的倒数。

因为0与任何数相乘都不等于1,所以0没有倒数。

五、 巩固练习

(用多媒体投影出示下列各题,学生先做,再全班交流)

1、 写出下列各数的倒数。

4/11 16/9 35 7/8 4/15

2、 下面说法对不对?为什么?

(1)7/12与12/7的乘积为1,所以7/12与12/7互为倒数。

(2)1/2x4/3x3/2=1,所以1/2、4/3、3/2互为倒数。

(3)0的倒数还是0。

(4)一个数的倒数一定比这个数校

六、归纳小结,交流共享

师:本节课你学到了什么,你有什么体会

生:我认识了什么叫倒数,还学会了怎样求倒数。

七、布置作业:练习7第7题。

《倒数的认识》教学设计 篇四

教学重点:认识倒数并掌握求倒数的方法

教学难点:小数与整数求倒数的方法

教学过程:

一、基本训练

口算:

上面各式有什么特点?

还有哪两个数的乘积是1?请你任意举出乘积是1的两个数。

(板书:乘积是1,两个数)

二、引入新课

刚才我们所举出的乘积是1的两个数之间有一种特殊的关系。

(板书:倒数)

三、新课教学

1、乘积是1的两个数存在着怎样的倒数关系呢?

请看:,那么我们就说是的倒数,反过来(引导学生说)

是的倒数,也就是说和互为倒数。

和存在怎样的倒数关系呢?2和呢?

2.深化理解

提问:①什么是互为倒数?

怎样理解这句话?(举例说明)

(的倒数是,的倒数是,。.。.。.不能说是倒数,要说它是谁的倒数。)

②0有倒数吗?为什么?1有倒数吗?什么?(0虽然可以看作几分之0,如,。.。.。.但是把分子、分母调换位置,分母为0,不成立,所以0没有倒数,另外0和任何数相乘却为0。1可以写作,1与相乘还是1,符合倒数的意义,所以1的倒数是1)。

3.求一个数的倒数

教师设疑:怎样的两个数互为倒数呢?请同学们试着写一写。

①出示例题

例:写出、的倒数

学生试做讨论后,教师将过程板书如下:

所以的倒数是,的倒数是。

(能不能写成,为什么?)

总结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。

②深化

你会求小数的倒数吗?(学生试做)

《倒数的认识》教学设计 篇五

一、教学内容:

九年义务教育六年制第九册第二单元《倒数的认识》

二、教材分析:

“倒数的认识”是在学生掌握了整数乘法、分数加法和减法计算、分数乘法的意义和计算法则、分数乘法应用题等知识的基础上进行教学的。“倒数的认识”是分数的基本知识,学好倒数不仅可以解决有关实际问题,而且还是后面学习分数除法、分数四则混合运算和应用题的重要基础。

三、教学目标:

1.理解倒数的意义,掌握求倒数的方法。

2.能熟练地写出一个数的倒数。

3.结合教学实际培养学生的抽象概括能力。

四、教学重点:理解倒数的意义,掌握求倒数的方法。

五、教学难点:熟练写出一个数的倒数。

六、教学过程:

(一)、 谈话

1.交流

师: 我们的黑板是什么颜色?

生:黑色。

师:教室的墙面又是什么颜色?

生:黑色。

师:黑与白在语文上是什么关系?

生:黑是白的反义词。

生:白是黑的反义词。

师:能说黑是反义词或白是反义词吗?

生:不能,因为黑与白是相互依存的关系。必须说清楚谁是谁的反义词。

师:那么,数学上有没有相互依存关系的现象呢?

生:约数和倍数。

师:你能举例说明约数和倍数的相互依存关系吗?

生:例如8是4的倍数,4是8的约数。不能说成8是倍数或4是约数。因为8和4是相互依存的。

2.导入 今天,我们继续来研究数学中具有相互依存关系的现象的有关知识。

(二)、学习新知

对数游戏

1.学习倒数的意义

我们六年级办公室里有7人,男教师4人,女教师3人,下面我和同学们做个对数游戏,就是我先根据3和4 说一个数,同学们跟着根据3和4说一个数 。

师:4是3的4/3,

生:3是4的 3/4

师:7是15的7/15;

生:15是7的15/7。

提问;看我们做游戏的结果,你们有没有发现什么?

生1:第一个分数的分子就是第二个分数的分母,第一个分数的分母就是第二个分数的分子。

生2:两个分数的分子、分母相互调换了位置。

生2:两个分数的乘积是1。

提问:像符合这种规律的两个数叫做什么数呢?谁能给这种数取个名字。(倒数) 出示课题:倒数的认识

提问:那么怎样的两个数才是互为倒数呢?指导看书。

思考:(1)什么是倒数?满足什么条件的两个数互为倒数?

(2)你能找出互为倒数的两个数吗。请举例

评析:回答问题

理解“互为”的意义。怎样的两个数互为倒数。

找朋友游戏(课前每位同学发一张数字卡片)

练习

(!)出示卡片 (六位同学举着卡片依次站在黑板前)

7/9 11/4 1/50 8 6/5 99

(2) 规则:如果下面的同学拿到的数是以上这些数字的倒数就到相应的同学前面排队

提问:下面的同学你们找到自己的朋友了吗?那么你们能找到自己的朋友吗?

3教学求一个数倒数的方法

出示例题:找出下列各数的倒数

2/3 7/4 1/5 9 1/7/8 0.4

小组讨论 指名板演

提问:1.你是怎么找出2/3的倒数的?

生1:因为2/3与3/2乘积是1,所以2/3的倒数是2/3

生2:因为互为倒数的两个数的分子与分母正好调换位置。2/3的分子与分母调换位置后是3/2,所以2/3的倒数是3/2 。

2.你是怎么找出7/4的倒数的?

……

提问: 我们怎样才能很快地找到一个数的倒数?为什么?

4.练习 请剩下的没有找到朋友的同学继续找倒数

5.讨论:1的倒数是谁?0的倒数呢?

生:1的倒数是1

师:能说明一下理由吗?

生1:因为1与1的乘积还是1。

生2:因为1可以化成1/1,1/2的分子与分母调换位置后还是1/1,即1,所以1的倒数是1。

师:0的倒数呢?

生1:0的倒数是0。因为1的倒数是1,所以0的倒数是0。

生2:因为0与任何数相乘都得0,所以0的倒数是任何数。

生3:0的倒数是没有的。因为乘积是1的两个数才互为倒数,而0乘任何数都得0,说明0乘任何数都不得1,所以0没有倒数。

生4:0可以写成0/1,0/1的倒数是1/0。

生5:不对,1/0分母是0,没有意义,所以0是没有倒数的。

6.完善求一个数的倒数的方法

三、 巩固练习

(一)填空

1.因为5/3*3/5=1,所以()和()互为();

2.因为15*1/15=1,所以()和()互为 ();

3.4/7与()互为倒数;

4.()的倒数是6/11

5.()的倒数是2

6.1/8的倒数是()

7.1/2/7的倒数是()

8.0.3的倒数是()

(二)判断

1.得数是1的两个数互为 倒数。()

2.互为倒数的两个数乘积一定是1。()

3. 1的倒数是1,所以0的倒数是0 。()

4.分数的倒数都大于1。()

(四)思考

4/5*()=()*8

四、总结:今天我们学习了什么知识?你有什么收获?还有什么问题吗?

五、 布置作业

简评:

一、自主学习中让学生勇于创新

新课程标准 指出:“学生是学习的主人。”“有效的数学学习活动不能单纯地依赖模仿与记忆。动手实践,自主探索,合作交流是学生学习数学的重要方式。”因此,教师在课堂上应相信学生、大胆放手,引导学生主动地进行自学、思考、讨论、合作交流等活动,发现规律,掌握知识,提高能力。让学生在讨论交流中力图创新,学习创新。本案里例中“你有没有发现什么?”“怎样求一个数的倒数”“1的倒数是几,0的倒数呢?”等处的交流促进了学生对知识的感悟与理解。特别是对“0的倒数呢?”一问的回答,学生各抒几见,有的用推理的方法解释0的倒数是谁;有的用旧知识来解决新问题;也有的用反证法来阐述理由。虽然有对也有错,但用不同的方式或不同的角度来思考问题,无疑体现了学生学习方法上的创新,进而实现知识上的统一。

二、在游戏活动中实现新知的推进

游戏是小学生喜闻乐见的活动方式。游戏可以使学生的注意力更持久,积极性更高。可以让学生在轻松愉快的气氛中学到知识。这节课设计的两个游戏贯穿了新授内容的始终。第一个对数游戏让学生通过听一听,想一想,说一说来感受倒数的特征,即互为倒数的两个数分子与分母调换了位置。为后面学习“求一个数的倒数的方法“打下基础。第二个找朋友游戏,首先,让学生通过找朋友巩固了怎样的两个数互为倒数这一知识点;其次,在剩下的数中选取典型让学生通过讨论想办法找到朋友。并概括出求一个数的倒数的一般方法。这样使学生在不知不觉中接受新知;再次,在剩下的数中继续找朋友,起到了“做一做”的效果;最后,想办法找1和0的朋友,完善找一个数的倒数的方法。本节课上设计的游戏不仅在教学上实现了合理、自然的过度,而且让学生学到了知识,还使学生品尝到游戏带来的快乐。

六年级数学上册倒数的认识教学设计 篇六

这部分内容是在学习了分数乘法的基础上教学的,主要为后面学习分数除法做准备,因为一个数除以分数的计算方法,归结为乘这个数的倒数。

这部分内容安排了2个例题,教学倒数的意义和求倒数的方法。

1. 例1。

让学生了解倒数的意义,编排了几组乘积为1的乘法算式,通过学生观察、讨论等活动,找出它们的共同特点,导出倒数的定义。

教学建议

(1)要让学生充分观察和讨论,找出算式的共同特点。

(2)给出倒数的定义后,结合定义讨论倒数的特点,特别要理解“互为倒数”的含义,即倒数是表示两个数之间的关系,这两个数是相互依存的,倒数不能单独存在。也可以结合判断题,如“73是倒数”对不对?以加深学生认识。

(3)可以让学生根据对倒数意义的理解,说出几组倒数,看学生是否真正理解和掌握。

2. 例2。

这里是一个图片教学求倒数的方法。教材先安排找倒数的活动,从而初步体验找倒数的方法。接着总结求倒数的方法,分两种情况。求分数的倒数是交换分数的 分子、分母的位置;求整数的倒数是把整数看作分子是1的分数,再交换分子和分母的位置。最后提出1和0的倒数的问题,让学生思考讨论得到结论。

教学建议

(1)通过找倒数的活动,交流探讨方法。

(2)结合教材给出的数据,讨论归纳方法。如35怎样找到它的倒数?6怎样找到它的倒数?

(3)把互为倒数的数提出来,还剩下1和0。提出问题:它们有没有倒数?倒数是多少?组织学生讨论,说出理由。在讨论的基础上归纳:根据倒数的意义,因为1×1=1,所以1的倒数是1;因为0与任何数相乘都是0,所以0没有倒数。

(4)完成“做一做”,检查对倒数意义的理解和求倒数方法的掌握。

3. 关于练习六的一些习题的说明和教学建议。

第2题是一个活动,可以同桌互说,一个人说出一个数,另一个人说出它的倒数,再交换说。

第3题通过判断对错的活动,加深对倒数的认识。

第(1)题,依据倒数的意义进行判断,是对的。

第(2)题,两个数互为倒数,而不是三个数,所以不对。

第(3)题,0没有倒数,所以不对。

第(4)题,不一定。大于1的假分数的倒数一定比这个假分数小,而真分数的倒数比这个真分数大。

整理与复习

对本单元的学习内容进行整理与复习。分为两个部分,第一部分以知识整理的形式回顾本单元的主要学习内容,引导复习;第二部分安排练习。

具体内容的说明和教学建议

复习部分

第1题,复习分数乘法的计算方法,呈现分数乘整数、整数乘分数和分数乘分数三道题。可以先由学生独立完成,再说说每道题的计算方法,回忆总结分数乘法的计算方法。做错的找一找错在哪里,然后完成练习七的第1、2、3题。

第2题,运用乘法运算定律进行简便计算。可让学生先独立完成,再说说运用了什么运算定律。然后完成练习七的第4题。

第3题,解决问题。第(1)题,求一个数的几分之几是多少的问题。可让学生画线段图表示数量关系,列式解答,再说说解答的思路。第(2)题是稍复杂的 求一个数的几分之几是多少的。问题,也先要求学生画出线段图表示题意,再列式解答,并交流有什么不同的方法,是怎样想的。然后完成练习七的第5、6题。

第4题,先说说什么叫倒数,再找出各个数的倒数,并说说找的方法。然后完成练习七的第7题。

推荐访问:教学设计 倒数 《倒数认识》教学设计6篇 《倒数的认识》教学设计 倒数的认识教学设计一等奖

Top