昆博公文网
当前位置 首页 >专题范文 > 公文范文 >

2023年人教版五年级下册数学教案6篇

发布时间:2023-03-10 08:15:11 来源:网友投稿

下面是小编为大家整理的2023年人教版五年级下册数学教案6篇,供大家参考。

2023年人教版五年级下册数学教案6篇

数学起源于人类早期的生产活动,并且可以应用实际问题。基础数学的知识与运用是个人与团体生活中不可或缺的一部分,这次为您整理了人教版五年级下册数学教案优秀6篇,如果能帮助到您,小编的一切努力都是值得的。

人教版数学五年级下册教案 篇一

教学目标

1、知识与技能

(1)理解掌握质数、合数的概念和判断方法,能灵活选择方法判断一个数是质数还是合数;

(2)能正确判断一个数是质数还是合数。

(3)能判断两个自然上的和是奇数还是偶数。

2、过程与方法

引导学生通过动手操作、观察比较、猜想验证、理解感悟质数、合数的含义;

3、情感态度与价值观

培养学生分析问题的能力和应用数学的意识;体验从特殊到一般的认识发展过程,进一步完善学生对自然数的分类方法的掌握,培养学生思维的灵活性。

教学重点

理解质数、合数的含义,能正确快速地判断一个数是质数还是合数。

教学难点

能运用一定的方法,从不同的角度判断、感悟质数合数。

教学方法

启发式教学、自主探索、合作交流、讨论法、讲解法。

课前准备

多媒体课件

课时安排

1课时

教学过程

(一)激趣导入。

一、创设情境,引入新课(课件第2张)

1.谈话:师:同学们,这节课我们先来做一个抢答游戏,看你们对以前学过的知识掌握的怎么样。

2.抢答:请同学们以最快的速度说出下面的数有几个因数。

师出示数,学生抢答因数的个数。

3、思考:

(1)一个数的最小因数是几?最大因数是几?(课件第3张)

(2)一个数的因数是有限的还是无限的?

(3)怎样找一个数的因数?

生1:一个数是最小因数是1,最大因数是它本身。

生2:一个数因数的个数是有限的。

生3:找一个数的因数,用这个数依次除以1,2,3,4……商如果是整数,除数和商都是这个数的因数。

设计意图

用抢答游戏的方式引入课题,引起学生的兴趣,通过对旧知识的复习,为下面要学习的质数与合数做准备。

4、师:我们学过找一个数的因数的方法,那一个数的因数的个数又有什么规律呢?这节课我们来学习两个新概念:质数和合数。

(板书课题)

(二)探究新知

1、找出1-20各数的因数,看看它们的因数的个数有什么规律。

(1)学生小组内交流,写出1--20各数的因数,看看它们的因数的个数有什么特点。(课件第4张演示)

1的因数有:1 11的因数有:1,11

2的因数有:1,2 12的因数有:1,2,3,4,6,12

3的因数有:1,3 13的因数有:1,13

4的因数有:1,2,4 14的因数有:1,2,7,14

5的因数有:1,5 15的因数有:1,3,5,15

6的因数有:1,2,3,6 16的因数有:1,2,4,8,16

7的因数有:1,7 17的因数有:1,17

8的因数有:1,2,4,8 18的因数有:1,2,3,6,9,18

9的因数有:1,3,9 19的因数有:1,19

10的因数有:1,2,5,10 20的因数有:1,2,4,5,10,20

(2)师:观察它们因数的个数,你发现了什么?

小组讨论:根据因数的个数,你觉得可以怎样分类?

(3)(课件第6张)

生1:有的数只有两个因数,如5的因数是1和5。1只有一个因数1。

生2:有的数的因数不止两个……我们来分分类吧!

2、学习质数与合数(出示课件第7张)

师:一个数,只有1和它本身两个因数,这样的数叫做质数(或素数)。如2、3、5、7都是质数。

一个数,除了1和它本身还有别的因数,这样的数叫做合数。如4、6、15、49都是合数。

1既不是质数,也不是合数。

3、做质数表。(课件第8张)

(1)找出100以内的质数,做一个质数表。

(2)学生讨论:怎样找100以内的质数?说说你的方法。

(课件第10张)

生1:可以把每个数都验证一下,看哪些数是质数。

生2:先把2的倍数划去,但2除外,划掉的这些数都不是质数。3的倍数也可以……

划到几的倍数就可以了?

生3:划到7的倍数就可以了。

(3)(课件第11张演示)剩下的数都是质数。

(4)师出示100以内的质数表(课件第12张)

4、牛刀小试。(课件第13张)

(1)将下面的各数分别填入指定的圈内。

2 27 37 11 58 61 73 83 95

(2)两个质数,和是10,积是21,这两个质数是多少?

生:21=3×7,3和7都是质数,而且3+7=10,所以这两个质数就是3和7。

两个质数,和是7,积是10,这两个质数是多少?

10=2×5,2和5都是质数,而且2+5=7,所以这两个质数就是2和5。

5、探索两数之和的奇偶性。(课件第15张)

师:奇数与偶数的和是奇数还是偶数?奇数与奇数的和是奇数还是偶数?偶数与偶数的和呢?

(1)师:从题目中你知道了什么?

生1:题目让我们对奇数、偶数的和做一些探索。

生2:我把问题表示成这样……

(2)小组讨论:你怎样判断任意两个整数的和是奇数还是偶数?

(3)汇报交流:

生1:我随便找几个奇数、偶数,加起来看一看。(课件第17张)

奇数:5,7,9,11,…

偶数:8,12,20,24,…

5+7=12

7+9=16

……

奇数+奇数=偶数

5+8=13

7+12=19

……

奇数+偶数=奇数

8+12=20

12+20=32

……

偶数+偶数=偶数

(课件第18张)生2:奇数除以2余1

偶数除以2余0

奇数加偶数的和除以2还余1,所以,奇数+偶数=奇数。

奇数加奇数的和除以2余0,所以,奇数+奇数=偶数。

偶数加偶数的和除以2还余0,所以,偶数+偶数=偶数。

(4)师:同桌讨论:这个结论正确吗?你还有其他的方法吗?试一试。

同桌找一些大数,验证一下所得的结论是否正确。

(5)(课件第20张)汇报交流:

534+319=853

所以:偶数+奇数=奇数

681+249=930

所以:奇数+奇数=偶数

564+232=796

所以:偶数+偶数=偶数

设计意图

用归纳的方法得出结论,培养学生的能力。

6、火眼金睛辨对错。(课件第21张)

(1)所有的奇数都是质数。(×)

(2)所有的偶数都是合数。(×)

(3)在1,2,3,4,5中,除了质数以外都是合数。(×)

(4)两个质数的和是偶数。(×)

(5)两个奇数的和是偶数。(√)

7、小结:刚才的学习你学会了什么?(课件第22张)

(1)质数与合数的概念。

一个数,只有1和它本身两个因数,这样的数叫做质数(或素数)。

一个数,除了1和它本身还有别的因数,这样的数叫做合数。

(2)1既不是质数,也不是合数。

(3)自然数可以分为质数、合数和1。

(4)偶数+奇数=奇数

奇数+奇数=偶数

偶数+偶数=偶数

(三)课堂练习

谈话:同学们,你们学得怎么样了?我们一起到智慧乐园挑战一下自己吧!有没有信心呢?

1、写出下面各数的因数。(课件第23张)

(1)在50以内的自然数中,最大的质数是(47),最小的合数是(4)。

(2)既是质数又是奇数的最小一位数是(3)。

(3)如果两个质数的和是24,可以是(5)+( 19),(7)+(17)或(11)+(23)。

(4)在自然数中,最小的奇数是(1),最小的偶数是(0),最小的质数是(2),最小的合数是(4)。

2、不计算,判断下面算式的结果是奇数还是偶数。(课件第24张)

1+2+3+4+…+40

生:1-40的自然数中,奇数和偶数各有20个,因为奇数+奇数=偶数,20个奇数相加和是偶数,偶数+偶数=偶数,20个偶数相加和是偶数,所以最后结果一定是偶数。

(四)拓展提高

算一算:3个不同质数的和是最小合数的平方,这3个质数的积是多少?

最小的合数是4,4?=16。

哪3个质数的和是16呢?

2+3+11=16

2×3×11=66

答:这3个质数的积是66。

(五)课堂总结

师:通过学习,你有什么收获?

生交流:

1、一个数,只有1和它本身两个因数,这样的数叫做质数(或素数)。

2、一个数,除了1和它本身还有别的因数,这样的数叫做合数。

3.1既不是质数也不是合数。

4、奇数+奇数=偶数奇数+偶数=奇数偶数+偶数=偶数

(六)板书设计

质数和合数

一个数,只有1和它本身两个因数,这样的数叫做质数(或素数)。

一个数,除了1和它本身还有别的因数,这样的数叫做合数。

1既不是质数也不是合数。

教学反思

在教学质数和合数这一课时,我运用了自主、合作、探究的教学方法,使学生在参与中产生求知欲望,调动学习积极性。首先用猜谜语的形式引入课题,在学生复习因数和倍数的知识的基础上,让学生独立写出1-20这20个数的因数,再根据因数多少进行分类,然后以小组为单位交流,学生通过交流,知道可以分为几种情况,从而引出质数、合数的概念。?在教学中教师努力放手,让学生从自己的思维实际出发,给学生以充分的思考时间,对问题进行独立探索、尝试、讨论、交流,学生充分展示自己的思维过程。在合作交流中互相启发、互相激励、共同发展。学生经历和感受了合作、交流、成功、愉悦的情感体验。

课堂上学生是“主角”,教师只是一个“配角”,最大限度地把时间和空间都留给学生,使每个学生都参仔细观察,认真思考,充分激发学生思维的主动性和积极性。在课堂中,要求学生观察1--20的因数的个数,自己按照一定的标准进行分类,分完后先小组内交流。说说你是按什么来分的?分成了哪几类?由于采用分的标准也必定不同,然后在让学生说标准的过程中,感悟到质数和合数的各自特征,一点点的提炼归纳出质数和合数的意义。培养学生的分类、观察、分析、归纳和交流的数学能力,建立正确的分类思想。整个过程都是学生在动手操作、交流讨论、归纳概括,而教师只是在关键之处适当点拔,引导学生质疑、释疑、归纳、

人教版五年级下册数学教案 篇二

课标要求:探索给定情境中隐含的规律。

课标解读:

行为动词是“探索”, 指的是独立或他人合作参与特定的数学活动,理解或提出问题,寻求解决问题的思路,发现对象的特征及其与相关对象的区别和联系,获得一定的理性认识。核心词是“规律”,本节课指的是有序思考的方法。

由此看来课标对这部分知识的要求是让学生在解决实际问题的过程中,学会排列方法,即有序排列,而不是杂乱无章的去解决问题。

教材分析:教材是通过三个人排列照相有多少种不同的排法,四个人小合唱固定一个人的位置又有多少中不同的排法,这样两个问题引导学生认识和了解简单的排列,通过列举等直观方法帮学生发现规律掌握解决问题的策略和方法。同时让学生初步的观察、分析、推理及有序全面思考问题的意识与能力。其中重点是培养学生的思维方法,发展学生的思维能力。

教学目标:

1、探索、发现现实生活中简单的排列规律,培养观察能力及初步推理能力。

2、通过观察、研读、交流、验证等活动,经历探索简单事物排列的过程,体验有序、全面地思考问题的方法。

3、在解决实际问题中体验成功的喜悦,感受数学与生活的紧密联系和数学学习的乐趣,激发学生对身边事物进行数学思考的意识,培养学生初步的数学意识。

教学重、难点:在探究的过程中,发现简单事物的排列规律。

教学策略:

(1)情境教学法:通过创设现实情境,引起学生的学习兴趣及本节课所要研究的主要问题。

(2)“探究——研讨”法:学生在自主探究、合作交流的过程中,分析问题、解决问题、发现问题,从而提高思维能力。

教学环节:

第三个环节是运用规律解决问题。在这个环节,我提出了

“如果于老师带领我们班A、B、C三个同学到文登学公园游玩,最后我们四个人要排成一行合影留念,而且要把老师安排在左起第二个位置上,其他的3个同学任意排。想一想,有多少种不同的排法?这个问题,引发学生的思考,引导学生发现,三个人排队和四个人排队且确定一个人的位置的排法总数是相等的,让学生意识到排法总数是不受确定的那个人的位置影响的。让学生在探究中体会有序思维方法,发展学生思维能力,在交流中进行思维的碰撞,统一认识。

五年级下册人教版数学教案 篇三

教学目标:

1、知识技能:经历探索分数基本性质的过程,理解分数的基本性质,能运用分数的基本性质,把一个分数化成指定分母或分子而大小不变的分数。

2、思考与问题解决:经历观察讨论,操作等学习活动,能对分数的`基本性质作出简要的,合理的说明,培养学生的观察,比较,归纳,总结概括的能力。

3、情感态度:经历观察,操作和讨论等数学学习活动,使学生进一步体验数学学习的乐趣,鼓励学生敢于发现问题,培养学生勇于解决问题的学习品质。

教学重点:

探索,发现和掌握分数的基本性质,并能运用分数的基本性质解决问题。

教学难点:

自主探索,归纳概括分数的基本性质。

教具学具准备:

多媒体课件,正方形纸,彩笔。

教学设计:

一、创设情境,导入新课:

1、课件分别出示两张不同的孙悟空的照片。师:学们仔细看看这两张照片,你有什么发现?(指名回答)。

2、教师引导交流:孙悟空本人没有改变,只不过是外表的打扮装饰发生了改变。

3、学生初步感知了什么变了而什么却没有变的概念。

4、教师导入新课:今天我们就来探讨什么变了而什么没有变的有关内容。教师板书课题:分数的基本性质设计意图:利用学生感兴趣的图片来吸引学生的注意力和观察能力,为下一步学习营造一个轻松活跃的氛围。

二、探究新知。

(一):

1、师:在我们在学习这个新的内容之前,我们首先来复习一下除法与分数的关系。学生回答教师板书:

被除数=课件出示:120÷30=(120×2)÷(30×2)=(120÷10)÷(30÷10)=

2、同学们说说这几道相等吗?(指名回答)。

3、教师引导说出商不变的性质,课件出示商不变的性质的定义。

设计意图:通过复习商不变的性质,为下一步更容易的学习分数的基本性质打下基础。

(二)、教学新知。

1、师:请同学们拿出课前准备好的正方形纸,把手中的纸平均折成4份,其中把3份图上你喜欢的颜色。

2、学生操作,教师巡视并特别提醒学生注意“平均分”。

3、展示学生的作业。

4、师:现在请同学们把正方形纸平均分成8份,16份,分好之后你有什么发现?(指名回答)。

5、教师归纳总结,并课件出示:设计意图:同一张纸能平均分成不同的份数,拓展学生的思维能力。

6、引导学生观察:

观察它们的分子和分母是怎样变,学生观察,思考,交流后,教师集体指导观察,并板书:

教师归纳总结后,学生完成课本66页的填空题,完成后集体回答。

设计意图:学生通过动手操作发现一些表象,但这些表象还须上升为科学理论,这就需要学生能透过表象识别表现后蕴藏的规律,这才能知其然且知其所以然,便于以后举一反三,解决同类相关问题。

7、课件出示:(通知互相讨论)

(1)相比较,看看分子分母有什么变化?

(2)在这个变化中,你们发现了什么规律。

8、教师引导学生说出:分数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。这就是分数的基本性质。(教师特别强调“同时”“同一个数”)。

9、教师提出疑问:为什么要0除外呢?学生回答,教师归纳:因为0和任何数相乘都得0,而分数的分母是不能为0的。

10、同学们,现在你们来看看分数的基本性质和你们以前学习过得商不变性质有什么不同呢?(课件出示两性质作对比)

师:分数的基本性质和商不变性质的规律是一致的。

三、巩固强化,拓展应用。

(1)课件出示:(集体回答)。

(2)指出下列分数是否相等。(指名回答)。

(3)把和化成分母是10而分数大小不变的分数。(指名到台上板演)。

(4)课件出示小故事。

有位老爷爷把一块地分给三个儿子。老大分到了这块地的,老二分到了这块地的。老三分到了这块的。老大、老二觉得自己很吃亏,于是三人就大吵起来。刚好阿凡提路过,问清争吵的原因后,哈哈的笑了起来,给他们讲了几句话,三兄弟就停止了争吵。

你知道,阿凡提为什么会笑吗?他对三兄弟讲了哪些话?(让学生课后去思考)

设计意图:多样的练习可以让学生及时巩固所学知识,有调动了学习的积极性。

四、回顾总结,梳理新知。

同学们,你们对分数又有了哪些新的了解呢?板书设计:分数的基本性质数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。这就是分数的基本性质。

教学反思:

1、创设情境,激发学生兴趣。出示孙悟空的照片激发学生的兴趣,吸引学生的注意力。

2、手脑并用,在操作中深入感知分数。请同学们用一张正方形纸片,动手折一折,通过三次的对折,每次找出一个和相等的分数,比较涂色部分大小有没有变化?(没有)。那么得到了什么结论?教师引导学生观察分子,分母的变化,经历总结得出:分数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。学生对此进行巩固后,再引导学生说出:0除外。学生在动手实践的过程中动脑思考,很快地突破了重难点,取得很好的效果。

3、巩固练习,围绕中心。在设计练习的过程中,采取多种形式呈现,使学生加深对分数基本性质的理解,激发了学生学习的兴趣,使每个学生都能理解所学知识,学有所获,并进一步学习约分和通分打下了良好的基础。

人教版五年级下册数学教案 篇四

教学内容:

教材58~59“分数混合运算(二)”

教学目标:

1.在观察比较中,体会整数运算变律在分数运算中同样适用。

2.利用分数加、减、乘、除法解决日常生活中的实际问题,发展应用意识。

教学重难点:

1.能体会整数运算律在分数运算中同样适用。

2.能解决日常生活中的实际问题。

教学过程:

一、创设情景 激趣揭题

1.计算。

2.引入新课分数混合运

二、扶放结合探究新知

1.出示“第十届动物车展”情景图,从情悦图中,找出有关信息及问题,并估一估第二天的成交量是多少?

2.理解题意,用图来表示题目中数量之间的关系。

3.解决问题

①统计图,让学生理解“第二天成交量此第一天增加了1/5” 这句话的意思是第二天增加的是第一天的1/5。

②用线段图来表示第二天和第一天成交的汽车辆数之间的关系。

4.把握算法之间的联系。

三、反馈矫正落实双基

1.做教材第59页“试一试”第一题。总结:整数运算律在分数运算中同样适用。

2.做教材第59页“试一试”第二题。引导学生分析问题的条件及解决问题的方法。

四、小结评价布置预习

1.这节课你学会了什么?有什么收获?在学习中遇到了什么没有得到解决的问题?

2.预习分数混合运算(三)

板书设计:

分数混合运算(二)

整数的运算律在分数运算中同样适用。

人教版数学五年级下册教案 篇五

20xx年春人教版五年级数学下册全册教案,9单元,每单元一个word文件,以下为第一单元部分内容:

第一单元 观察物体(三)

本单元是观察物体的第三部分,主要内容有:根据给出的从一个方向看到的形状图,用给定数量的小正方体摆出相应的几何组合体。以及根据给出的从三个方向看到的形状图,用小正方体摆出相应的几何组合体。

例1:教学是根据给出的从一个方向看到的形状图,用给定数量的小正方体摆出相应的几何组合体,学生需要借助空间想象力进行操作,初步经历逆向思考的过程。

例2:根据给出的从三个方向看到的形状图,用小正方体摆出相应的几何组合体,利用例1的经验进行操作,进一步培养学生的空间想象能力和推理能力。

在本单元的教学中,精心选择学生熟悉的并能承载相应教学内容的现实素材,引导学生在解决实际问题的过程中,自主寻求立体图形的观察方法,以形式化的方式表达出来。通过观察、分析、抽象、概括和交流,引导学生能灵活掌握所学知识,掌握观察物体的方法和规律,培养自觉探索的意识和习惯,引导学生通过讨论提出不同的方法,并对方法进行比较,体会观察物体的不同思路。同时要有层次地组织练习,让学生在有趣的活动中,应用数学模型解决问题,既有利于提高学生的数学思考能力,又有利于发展学生学习数学的兴趣。

第1课时 观 察 物 体教学内容

教材第2~4页例1、例2,相应的“做一做”及练习一。内容简析例1教学是根据给出的从一个方向看到的形状图,用给定数量的小正方体摆出相应的几何组合体,学生需要借助空间想象力进行操作,初步经历逆向思考的过程。接下来,例2是根据给出的从三个方向看到的形状图,用小正方体摆出相应的几何组合体,利用例1的经验进行操作,进一步培养学生的空间想象能力和推理能力。教学目标1.根据从一个方向看到的形状图,用给定数量的小正方体摆出相应的几何组合体,体会摆法的多样化。

2、根据给出的从三个方向看到的形状图,用小正方体摆出相应的几何组合体,体会有些摆法的确定性。

3、使学生经历观察、操作、想象、猜测、分析和推理等过程,积累活动经验,提高学生的空间想象能力和推理能力,进一步发展空间观念。教学重难点重点:根据看到的平面图形按要求摆出相应的立体图形。

难点:借助空间想象还原立体图形。教法与学法1.本节课主要采用观察法、发现法和讲授法,让学生从观察、想象和操作中体会立体图形与视图之间的联系,积累三维图形与二维图形转换的经验,发展空间观念。

2、学生学习主要以自主探究式学习方法为主,学生通过观察以及总结来解决问题,教师不需要做太多的讲解,只适时作适当的引导。承前启后链回顾从上面、左面、正面观察物体。

从三个不同方向观察到的形状还原立体图形。

进一步学习立体图形与平面图形的互化。

教学过程一、情景创设,导入课题古诗导入法:同学们,还记得《题西林壁》这首古诗吗?同一座庐山,为什么诗人看到的却是“远近高低各不同”的景色呢?这是因为诗人从不同的`角度对庐山进行观察。如果观察老师手里的这两个立体图形,但只让你看到它的正面,又会有什么样的结果呢?今天,我们就一起来研究这个问题。(板书课题:观察物体)

谜语导入法:同学们,老师和你们猜一个谜语:“左一片,右一片,摸得着,看不见,是什么呢?”(耳朵)为什么能看见别人的耳朵,却看不见自己的耳朵呢?因为我们观察的角度不一样,今天我们就一起来进一步研究观察物体。(板书:观察物体)

竞猜导入法:同学们,我这里有两个立体图形,但只让你们看到它的正面,你能猜出是什么立体图形吗?看看谁能猜对。(学生答,教师随机点评)

(出示课件:长方形、圆形图片。)

预设:长方体和球、长方体和圆柱、长方体和圆锥;长方体和球、横放着的圆柱和竖放着的圆柱、横放着的圆柱和圆锥。

教师:其实,老师摆的是两个圆柱。看来,同学们只看到正面并不好确定究竟摆的是什么立体图形。别急,今天的知识能帮助到你们!(板书:观察物体)

二、师生合作,探究新知◎根据一个面的摆放,体会摆法的多样性。

1、出示探究内容,明确探究要求。

出示课件,引导学生探究用4个同样的小正方体,摆出从正面看到的是 的图形。可以怎样摆?

2、学生动手拼摆,验证交流方法。

请同学们拿出4个小正方体,根据你的理解,用手中的4个小正方体先摆一摆。摆好后仔细观察正面,验证自己的摆法是否正确,最后和同桌交流一下你是怎么摆的。

3、全班交流,形成认识。

教师指定学生上台展示,反馈学生的摆法。总结:正面看起来形状相同的几何体,其摆法不一定相同。从同一方向看到的平面图形,在拼摆立体图形的过程中有多种拼摆方法,所得到的立体图形的位置关系和形状是不同的。

◎根据三个面的摆放,体会有些摆法的确定性。

1、出示课件教材例2。

谈话:下面分别给出了从正面、左面、上面看到的图形,你能用小正方体摆出原来的几何体吗?

2、学生动手拼摆,验证交流方法。小结:根据同一方向看到的平面图形,不能准确确定拼摆图形的位置关系、形状和立体图形的个数;只有把不同方向看到的平面图形综合考虑,才能形成完整的表象。

三、反馈质疑,学有所得质疑一:从同一方向去看两个立体图形,如果看到的平面图形的形状是一样的,能否判定这两个立体图形的形状形同呢?

师生交流,小结:不同的立体图形,有时候可以在同一方向得到相同的平面图形,所以根据从一个方向得到的平面图形,是无法断定立体图形的形状的,而要真正知道这个图形究竟是什么样的。就要从多个角度进行观察。

质疑二:从多个方向看到的平面图形,形成的是唯一的表象吗?

小组讨论,反馈交流,结论:有时从多个方向看到的平面图形,也不一定形成唯一的表象,如从左面看 ,从正面看 ,从上面看 ,拼摆的立体图形可能是 或 等。

四、课末小结,融会贯通通过今天的学习你有什么收获?还有什么疑问吗?

由学生自己来说说这节课的体会,共同总结。

1、根据同一方向看到的平面图形,不能准确确定拼摆图形的位置关系、形状和立体图形的个数。

2、只有把不同方向看到的平面图形综合考虑,才能形成完整的表象。五、教海拾遗,反思提升本节是一节观察物体的课,内容接近于实际生活,在了解学生已掌握知识的基础上,让学生自己总结、交流观察物体的感受,并根据自己的想象利用丰富的图形构造生活实景。避免了教师一味地讲解,学生一味地记忆的教学方法。课堂气氛非常活跃,学生在轻松的学习氛围中掌握了知识。1.本节课主要采取小组合作的形式进行教学。学生合作探究、相互交流,充分发挥学生的主体作用,调动学生学习的积极性。

2、帮助学生建立空间观念。几何知识的教学,重要的是建立空间观念。由实物抽象出实物图形,是帮助学生建立空间观念的一种有效途径。教学时先出示实物,让学生亲自走到不同的位置看一看它的形状,感知到站在不同位置,所看到的形状是不同的。在此基础上让学生进一步认识物体的正面、左面和上面,并能从这三个面观察到物体的不同的形状,从而帮助学生形成表象,初步建立空间观念。

我的反思:

板书设计观 察 物 体

第一单元复习教案复习内容

人教版五年级下册第一单元“观察物体(三)”。知识梳理1.根据一个面的摆放,体会摆法的多样性。

从正面看形状相同的几何体,其摆法不一定相同。从同一方向看到的平面图形,在拼摆立体图形的过程中有多种拼摆方法,所得到的立体图形的位置关系和形状是不同的。

2、根据三个面的摆放,体会有些摆法的确定性。

还原原来的物体时,我们可以按照一定的顺序进行拼摆,在这个过程中不断进行调整,最后验证确认。

复习目标

1、能根据给出的从一个方向看到的形状图,用给定数量的小正方体摆出相应的几何组合体,让学生体会可能有不同的摆法。

2、能根据给出的从三个方向看到的形状图,用小正方体摆出相应的几何体,体会有些摆法的确定性。

3、通过观察、操作等活动,培养学生的观察能力、动手能力,培养空间想象力和推理能力。复习重难点重点:能从正面看到的平面图形画出不同摆放方式的小正方体。

难点:引导学生进行空间图形的平面和立体想象,找出被遮挡住的小正方体。复习方法1.对学生掌握知识的情况进行查漏补缺,通过复习,使每个学生都能达到教学目标的基本要求。

2、复习课不仅要突出知识的综合性,更要通过各种层次、各种类型的练习,培养学生灵活运用知识解决问题的能力,让学生在复习中应充分体现从“学会”到“会学”的转化。复习过程一、创设情景,导入复习同学们,回顾一下我们在观察物体(三)这一单元里都学习了哪些内容,先想一想,然后与同伴交流。 指名汇报所学内容。(可以让2~3名学生汇报)

大家真了不起,学会了这么多的知识。这节课我们就对第一单元进行整理和复习。

(板书课题)二、回顾整理,建构网络1.让学生先自主整理,然后交流汇报。

2、师生共同梳理。

(1)复习:根据一个面的摆放,体会摆法的多样性。

(2)复习:根据三个面的摆放,体会摆法的确定性。

3、建构网络。

谈话:请同学们利用自己喜欢的形式(列举、表格、网络图等)把我们复习的内容进行简单的整理,并在组内进行交流。最后每小组推荐一位整理得最好的同学介绍自己整理的方法。

学生展示自己制作的知识结构网络。

教师总结形成较完整的知识网络。

三、重点复习,强化提高在本单元中,同学们认为哪里比较难理解,容易出错呢?你想提醒大家什么?(让学生充分地说)老师再强调摆法的多样性和确定性,只有把不同方向看到的平面图形综合考虑,才能形成完整的表象。四、自主检测,完善提高芳芳和兰兰用5个小正方体搭成一个立体图形,从右面看到的形状是 ,从左面看到的形状是 ,你能判断她们谁搭的对吗?

芳芳 兰兰总结提升

这节课你有哪些收获?对于本单元的知识,大家还有什么疑问吗?

人教版五年级下册数学教案 篇六

2、5的倍数的特征

【教学内容】

2、5的倍数的特征(教材第9页例1,教材第11页练习三第1~2题)。

【教学目标】

1.经历自主探索2和5的倍数的特征的过程。

2.知道2、5的倍数的特征,会判断一个自然数是不是2和5的倍数。

3.培养学生的观察、猜想、分析、归纳的能力,愿意与同学交流自己发现的结果,增强学习数学的兴趣。

【重点难点】

通过探索发现2、5的倍数的特征,判断一个数是不是2和5的倍数。

【复习导入】

师:同学们,我们一起玩个猜数游戏,好吗?你们任意说出一个自然数,不管是几位数,我都能很快的判断出它是否是2或5的倍数。不信可以试试看。

学生报数,老师答,同时请大家验证。

师:同学们的眼神里闪现出惊讶的目光。你们想知道老师为什么不计算就能马上判断出来吗?学了今天的知识,你们就知道老师猜数的奥秘了。

板书课题:2和5的倍数的特征。

【新课讲授】

1.探索5的倍数特征

(1)引入百数表。

(2)出示课件:百数表,在这些数中找出5的倍数,写出来。

(3)你们找的数和老师找的相同吗?(课件出示百数表)

(4)观察5的倍数,你有什么发现?把你的发现说给同桌听听。

(5)归纳:谁来概括一下5的倍数到底有什么特征?板书:个位上是0或5的数都是5的倍数

(6)验证:除了这些数以外,其它5的倍数也有这样的特征吗?请举例验证。请你写一个多位数,并且是5的倍数。

(7)过渡:学习了5的倍数的特征有什么好处?师随机在黑板上写一个数,让学生猜猜它是不是5的倍数。

(8)练一练:下面哪些数是5的倍数?

240,345,431,490,545,543,709,725,815,922,986,990。

过渡:那172是几的倍数呢?请同学验证。2的倍数有什么特征,想不想研究?下面我们一起研究2的特征。

2.探索2的倍数特征

(1)猜一猜:根据研究5的倍数特征的经验,你猜一猜2的倍数可能会有什么特征呢?

(2)课件出示:百数表找出2的倍数。(小组合作找出所有2的倍数)

(3)汇报后,观察2的倍数的特征,看看你刚才的猜测是不是正确。

(4)归纳:2的倍数有怎样的特征?

板书:个位上是0、2、4、6、8的数都是2的倍数。

(5)验证:除了这些数以外,其它2的倍数也有这样的特征吗?请举例验证。

(6)填一填:下面哪些数是2的倍数?1,3,4,11,14,20,23,24,28,31,401,826,740,1000,6431。

让学生独立完成后汇报。

3.奇数、偶数的再认识

自然数按是不是2的倍数来分可分为奇数和偶数两大类,2的倍数都是偶数,不是2的倍数就是奇数。

4.那么既是2的倍数又是5的倍数有什么特征呢?

(1)在5的倍数中找出2的倍数;

(2)在2的倍数中找到5的倍数。

比较:判断一个数是不是2或5的倍数,都是看什么?

结论:个位上是0的数,既是2的倍数又是5的倍数。

【课堂作业】

1.完成教材第9页“做一做” 。

2. 完成教材第11页练习三第1~2题。

【课堂小结】

1.现在,你们知道老师猜数的奥秘了吗?现在老师说数,请同学们判断出它是不是5或2的倍数。

2.通过今天的学习,你有什么收获?还有什么问题?

【课后作业】

完成练习册中本课时练习。

板书: 2、5的倍数的特征

个位上是0或5的数都是5的倍数;

个位上是0、2、4、6、8的数都是2的倍数;

个位上是0的数,既是2的倍数又是5的倍数。

教学反思

通过这节课的教学,使我认识到数学课堂教学活动是一个活泼的、主动的、丰富多彩的活动空间。教学中,我从学生已有的生活经验出发,结合学生的认识规律,给学生提供有趣的情景,激发学生的探求欲望,创设观察、操作、合作交流的机会;让学生通过动脑、动手、动口,做他们想做的,在做的过程中观察知识,在合作交流中去思考、质疑。充分发挥学生的主体作用,让学生在活动中学习数学,使学生真正感受到学习数学的乐趣。密切联系学生的生活实际,使学生真正领略到数学就在我们身边,生活中处处有数学。

推荐访问:

相关文章:

Top