昆博公文网
当前位置 首页 >专题范文 > 公文范文 >

初三数学圆知识点归纳2篇(精选文档)

发布时间:2023-03-15 14:25:05 来源:网友投稿

下面是小编为大家整理的初三数学圆知识点归纳2篇(精选文档),供大家参考。

初三数学圆知识点归纳2篇(精选文档)

圆是指在一个平面内,一动点以一定点为中心,以一定长度为距离旋转一周所形成的封闭曲线,标准方程是(x-a)²+(y-b)²=r²,其中点(a,b)是圆心,r是半径。为您精心收集了2篇《初三数学圆的知识点归纳》,希望朋友们参阅后能够文思泉涌。

初三数学圆的知识点归纳 篇一

一、圆的定义。

1、以定点为圆心,定长为半径的点组成的图形。

2、在同一平面内,到一个定点的距离都相等的点组成的图形。

二、圆的各元素。

1、半径:圆上一点与圆心的连线段。

2、直径:连接圆上两点有经过圆心的线段。

3、弦:连接圆上两点线段(直径也是弦)。

4、弧:圆上两点之间的曲线部分。半圆周也是弧。

(1)劣弧:小于半圆周的弧。

(2)优弧:大于半圆周的弧。

5、圆心角:以圆心为顶点,半径为角的边。

6、圆周角:顶点在圆周上,圆周角的两边是弦。

7、弦心距:圆心到弦的垂线段的长。

三、圆的基本性质。

1、圆的对称性。

(1)圆是轴对称图形,它的对称轴是直径所在的直线。

(2)圆是中心对称图形,它的对称中心是圆心。

(3)圆是旋转对称图形。

2、垂径定理。

(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。

(2)推论:

平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。

平分弧的直径,垂直平分弧所对的弦。

3、圆心角的度数等于它所对弧的度数。圆周角的度数等于它所对弧度数的一半。

(1)同弧所对的圆周角相等。

(2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。

4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。

5、夹在平行线间的两条弧相等。

6、设⊙O的半径为r,OP=d。

7、(1)过两点的圆的圆心一定在两点间连线段的中垂线上。

(2)不在同一直线上的三点确定一个圆,圆心是三边中垂线的交点,它到三个点的距离相等。

(直角三角形的外心就是斜边的中点。)

8、直线与圆的位置关系。d表示圆心到直线的距离,r表示圆的半径。

直线与圆有两个交点,直线与圆相交;直线与圆只有一个交点,直线与圆相切;

直线与圆没有交点,直线与圆相离。

9、平面直角坐标系中,A(x1,y1)、B(x2,y2)。

则AB=(x1+x2,y1+y2)

10、圆的切线判定。

(1)d=r时,直线是圆的切线。

切点不明确:画垂直,证半径。

(2)经过半径的'外端且与半径垂直的直线是圆的切线。

切点明确:连半径,证垂直。

11、圆的切线的性质(补充)。

(1)经过切点的直径一定垂直于切线。

(2)经过切点并且垂直于这条切线的直线一定经过圆心。

12、切线长定理。

(1)切线长:从圆外一点引圆的两条切线,切点与这点之间连线段的长叫这个点到圆的切线长。

(2)切线长定理。

∵PA、PB切⊙O于点A、B

∴PA=PB,∠1=∠2。

13、内切圆及有关计算。

(1)三角形内切圆的圆心是三个内角平分线的交点,它到三边的距离相等。

(2)如图,△ABC中,AB=5,BC=6,AC=7,⊙O切△ABC三边于点D、E、F。

求:AD、BE、CF的长。

分析:设AD=x,则AD=AF=x,BD=BE=5-x,CE=CF=7-x.

可得方程:5-x+7-x=6,解得x=3

(3)△ABC中,∠C=90°,AC=b,BC=a,AB=c。

求内切圆的半径r。

分析:先证得正方形ODCE,

得CD=CE=r

AD=AF=b-r,BE=BF=a-r

b-r+a-r=c

得r=(b+a-c)/2

(4)S△ABC=abc/4r

14、(补充)

(1)弦切角:角的顶点在圆周上,角的一边是圆的切线,另一边是圆的弦。

如图,BC切⊙O于点B,AB为弦,∠ABC叫弦切角,∠ABC=∠D。

(2)相交弦定理。

圆的两条弦AB与CD相交于点P,则PAPB=PCPD。

(3)切割线定理。

如图,PA切⊙O于点A,PBC是⊙O的割线,则PA2=PBPC。

(4)推论:如图,PAB、PCD是⊙O的割线,则PAPB=PCPD。

15、圆与圆的位置关系。

(1)外离:d>r1+r2,交点有0个;

外切:d=r1+r2,交点有1个;

相交:r1-r2

内切:d=r1-r2,交点有1个;

内含:0≤d

(2)性质。

相交两圆的连心线垂直平分公共弦。

相切两圆的连心线必经过切点。

16、圆中有关量的计算。

(1)弧长有L表示,圆心角用n表示,圆的半径用R表示。

L=n(圆心角)xπ(圆周率)xr(半径)/180

(2)扇形的面积用S表示。

S=lr/2

(3)圆锥的侧面展开图是扇形。

r为底面圆的半径,a为母线长。

扇形的圆心角α=l/r

S侧=arS全=ar+r2

中考数学圆知识点总结 篇二

1.不在同一直线上的三点确定一个圆。

2.垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧

推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

推论2 圆的两条平行弦所夹的弧相等

3.圆是以圆心为对称中心的中心对称图形

4.圆是定点的距离等于定长的点的集合

5.圆的内部可以看作是圆心的距离小于半径的点的集合

6.圆的外部可以看作是圆心的距离大于半径的点的集合

7.同圆或等圆的半径相等

8.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

9.定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦 相等,所对的弦的弦心距相等

10.推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两 弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。

11定理 圆的内接四边形的对角互补,并且任何一个外角都等于它 的内对角

12.①直线L和⊙O相交 d

②直线L和⊙O相切 d=r

③直线L和⊙O相离 dr

13.切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线

14.切线的性质定理 圆的切线垂直于经过切点的半径

15.推论1 经过圆心且垂直于切线的直线必经过切点

16.推论2 经过切点且垂直于切线的直线必经过圆心

17.切线长定理 从圆外一点引圆的两条切线,它们的切线长相等, 圆心和这一点的连线平分两条切线的夹角

18.圆的外切四边形的两组对边的和相等 外角等于内对角

19.如果两个圆相切,那么切点一定在连心线上

20.①两圆外离 dR+r ②两圆外切 d=R+r

③.两圆相交 R-rr)

④.两圆内切 d=R-r(Rr) ⑤两圆内含dr)

21.定理 相交两圆的连心线垂直平分两圆的公共弦

22.定理 把圆分成n(n≥3):

⑴依次连结各分点所得的多边形是这个圆的内接正n边形

⑵经过各分点作圆的切线,以相邻切线的交点为顶点的。多边形是这个圆的外切正n边形

23.定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

24.正n边形的每个内角都等于(n-2)×180°/n

25.定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

26.正n边形的面积Sn=pnrn/2 p表示正n边形的周长

27.正三角形面积√3a/4 a表示边长

28.如果在一个顶点周围有k个正n边形的角,由于这些角的和应为 360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

29.弧长计算公式:L=n兀R/180

30.扇形面积公式:S扇形=n兀R^2/360=LR/2

31.内公切线长= d-(R-r) 外公切线长= d-(R+r)

32.定理 一条弧所对的圆周角等于它所对的圆心角的一半

33.推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

34.推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所 对的弦是直径

以上就是为大家带来的2篇《初三数学圆的知识点归纳》,希望对您有一些参考价值。

推荐访问:知识点 归纳 数学 初三数学圆知识点归纳2篇 初三数学圆的知识点归纳 初三数学圆的知识点归纳总结

Top