高一数学知识点提纲9篇
下面是小编为大家整理的高一数学知识点提纲9篇,供大家参考。
想要学好数学,一定要多看例题,在看例题的过程中,大脑会将已有概念具体化,使对知识的理解更深刻,更透彻。下面是的小编为您带来的9篇《高一数学知识点提纲》,希望能对您的写作有一定的参考作用。
高一年级数学必修一知识点整理 篇一
函数的解析表达式
(1)。函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域。
(2)求函数的解析式的主要方法有:
1)凑配法
2)待定系数法
3)换元法
4)消参法
高一数学知识点 篇二
集合具有某种特定性质的事物的总体。这里的事物可以是人,物品,也可以是数学元素。
例如:
1、分散的人或事物聚集到一起;使聚集:紧急~。
2、数学名词。一组具有某种共同性质的数学元素:有理数的~。
3、口号等等。集合在数学概念中有好多概念,如集合论:集合是现代数学的基本概念,专门研究集合的理论叫做集合论。康托(Cantor,G、F、P、,1845年1918年,德国数学家先驱,是集合论的,目前集合论的基本思想已经渗透到现代数学的所有领域。
集合,在数学上是一个基础概念。
什么叫基础概念?基础概念是不能用其他概念加以定义的概念。集合的概念,可通过直观、公理的方法来下定义。
集合是把人们的直观的或思维中的某些确定的能够区分的对象汇合在一起,使之成为一个整体(或称为单体),这一整体就是集合。组成一集合的那些对象称为这一集合的元素(或简称为元)。
集合与集合之间的关系
某些指定的对象集在一起就成为一个集合集合符号,含有有限个元素叫有限集,含有无限个元素叫无限集,空集是不含任何元素的集,记做。空集是任何集合的"子集,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有传递性。
(说明一下:如果集合A的所有元素同时都是集合B的元素,则A称作是B的子集,写作AB。若A是B的子集,且A不等于B,则A称作是B的真子集,一般写作AB。中学教材课本里将符号下加了一个符号,不要混淆,考试时还是要以课本为准。所有男人的集合是所有人的集合的真子集。)
高一数学知识点 篇三
一、定义与定义式:
自变量x和因变量有如下关系:
=x+b
则此时称是x的一次函数。
特别地,当b=0时,是x的正比例函数。
即:=x(为常数,≠0)
二、一次函数的性质:
1、的变化值与对应的x的变化值成正比例,比值为
即:=x+b(为任意不为零的实数b取任何实数)
2、当x=0时,b为函数在轴上的截距。
三、一次函数的图像及性质:
1.作法与图形:通过如下3个步骤
(1)列表;
(2)描点;
(3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和轴的交点)
2.性质:(1)在一次函数上的任意一点P(x,),都满足等式:=x+b。(2)一次函数与轴交点的坐标总是(0,b),与x轴总是交于(-b/,0)正比例函数的图像总是过原点。
3.,b与函数图像所在象限:
当>0时,直线必通过一、三象限,随x的增大而增大;
当<0时,直线必通过二、四象限,随x的增大而减小。
当b>0时,直线必通过一、二象限;
当b=0时,直线通过原点
当b<0时,直线必通过三、四象限。
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当>0时,直线只通过一、三象限;当<0时,直线只通过二、四象限。
四、确定一次函数的表达式:
已知点A(x1,1);B(x2,2),请确定过点A、B的一次函数的表达式。
(1)设一次函数的表达式(也叫解析式)为=x+b。
(2)因为在一次函数上的任意一点P(x,),都满足等式=x+b。所以可以列出2个方程:1=x1+b……①和2=x2+b……②
(3)解这个二元一次方程,得到,b的值。
(4)最后得到一次函数的表达式。
五、一次函数在生活中的应用:
1、当时间t一定,距离s是速度v的一次函数。s=vt。
2、当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。
六、常用公式:(不全,希望有人补充)
1、求函数图像的值:(1-2)/(x1-x2)
2、求与x轴平行线段的中点:|x1-x2|/2
3、求与轴平行线段的中点:|1-2|/2
4、求任意线段的长:√(x1-x2)^2+(1-2)^2(注:根号下(x1-x2)与(1-2)的平方和)
高一数学知识点 篇四
1.子集,A包含于B,有两种可能
(1)A是B的一部分,
(2)A与B是同一集合,A=B,A、B两集合中元素都相同。
反之:集合A不包含于集合B。
2.不含任何元素的集合叫做空集,记为Φ。
Φ是任何集合的子集。
4、有n个元素的集合,含有2n个子集,2n-1个真子集,含有2n-2个非空真子集。
如A={1,2,3,4,5},则集合A有25=32个子集,25-1=31个真子集,25-2=30个非空真子集。
使用括号解题的注意点 篇五
1、在计算中,代入数值后,要适当添上括号,如把负数、分数、幂、根式看作一个整体括起来,即见负必括、见分必括、见幂必括、见根必括,否则,会发生计算错误。此规则在列式中类同。
2、在解方程中,遇到去分母的情况,如果分子是一个多项式,应该看作一个整体,在去分母时,应将它加上括号;分母有理化时,有理化因式如果是一个多项式,应看作一个整体括起来,即见多必括。
3、用分配律和去括号法则、添括号法则时,要正确使用,用分配律时千万勿漏乘某一项,即见律勿漏。
4、注意去、添括号时不要改变式子的值,即注意恒等。
高一数学知识点 篇六
圆的方程定义:
圆的标准方程(x—a)2+(y—b)2=r2中,有三个参数a、b、r,即圆心坐标为(a,b),只要求出a、b、r,这时圆的方程就被确定,因此确定圆方程,须三个独立条件,其中圆心坐标是圆的定位条件,半径是圆的定形条件。
直线和圆的位置关系:
1、直线和圆位置关系的判定方法一是方程的观点,即把圆的方程和直线的方程联立成方程组,利用判别式Δ来讨论位置关系。
①Δ>0,直线和圆相交、②Δ=0,直线和圆相切、③Δ<0,直线和圆相离。
方法二是几何的观点,即把圆心到直线的距离d和半径R的大小加以比较。
①dR,直线和圆相离、
2、直线和圆相切,这类问题主要是求圆的切线方程、求圆的切线方程主要可分为已知斜率k或已知直线上一点两种情况,而已知直线上一点又可分为已知圆上一点和圆外一点两种情况。
3、直线和圆相交,这类问题主要是求弦长以及弦的中点问题。
切线的性质
⑴圆心到切线的距离等于圆的半径;
⑵过切点的半径垂直于切线;
⑶经过圆心,与切线垂直的直线必经过切点;
⑷经过切点,与切线垂直的直线必经过圆心;
当一条直线满足
(1)过圆心;
(2)过切点;
(3)垂直于切线三个性质中的两个时,第三个性质也满足。
切线的判定定理
经过半径的外端点并且垂直于这条半径的直线是圆的切线。
切线长定理
从圆外一点作圆的两条切线,两切线长相等,圆心与这一点的连线平分两条切线的夹角。
高一年级数学必修一知识点整理 篇七
1、抛物线是轴对称图形。对称轴为直线
x=—b/2a。
对称轴与抛物线的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
2、抛物线有一个顶点P,坐标为
P(—b/2a,(4ac—b’2)/4a)
当—b/2a=0时,P在y轴上;当Δ=b’2—4ac=0时,P在x轴上。
3、二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
|a|越大,则抛物线的开口越小。
4、一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左;
当a与b异号时(即ab<0),对称轴在y轴右。
5、常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)
6、抛物线与x轴交点个数
Δ=b’2—4ac>0时,抛物线与x轴有2个交点。
Δ=b’2—4ac=0时,抛物线与x轴有1个交点。
Δ=b’2—4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x=—b±√b’2—4ac的值的相反数,乘上虚数i,整个式子除以2a)
高一数学知识点 篇八
1、集合的含义:
“集合”这个词首先让我们想到的是上体育课或者开会时老师经常喊的“全体集合”。
数学上的“集合”和这个意思是一样的,只不过一个是动词一个是名词而已。
所以集合的含义是:某些指定的对象集在一起就成为一个集合,简称集,其中每一个对象叫元素。
比如高一二班集合,那么所有高一二班的同学就构成了一个集合,每一个同学就称为这个集合的元素。
2、集合的表示
通常用大写字母表示集合,用小写字母表示元素,如集合A={a,b,c}。
a、b、c就是集合A中的元素,记作a∈A,相反,d不属于集合A,记作dA。
有一些特殊的集合需要记忆:
非负整数集(即自然数集)N正整数集N*或N+
整数集Z有理数集Q实数集R
集合的表示方法:列举法与描述法。
①列举法:{a,b,c……}
②描述法:将集合中的元素的公共属性描述出来。
如{xR|x-3>2},{x|x-3>2},{(x,y)|y=x2+1}
③语言描述法:例:{不是直角三角形的三角形}
例:不等式x-3>2的解集是{xR|x-3>2}或{x|x-3>2}
强调:描述法表示集合应注意集合的代表元素
A={(x,y)|y=x2+3x+2}与B={y|y=x2+3x+2}不同。
集合A中是数组元素(x,y),集合B中只有元素y。
3、集合的三个特性
(1)无序性
指集合中的元素排列没有顺序,如集合A={1,2},集合B={2,1},则集合A=B。
例题:集合A={1,2},B={a,b},若A=B,求a、b的值。
解:,A=B
注意:该题有两组解。
(2)互异性
指集合中的元素不能重复,A={2,2}只能表示为{2}
(3)确定性
集合的确定性是指组成集合的元素的性质必须明确,不允许有模棱两可、含混不清的情况。
高一年级数学必修一知识点整理 篇九
1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。
2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:
方程有实数根函数的图象与轴有交点函数有零点。
3、函数零点的求法:
求函数的零点:
1(代数法)求方程的实数根;
2(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点。
4、二次函数的零点:
二次函数。
1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点。
2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点。
3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点。
热门文章:
- 党风党性警示教育内容2024-11-01
- 党风党纪自我剖析材料范文2024-11-01
- 党费收缴存在的问题人民日报(4篇)2024-11-01
- 党费减免讨论会议纪要(2篇)2024-11-01
- 过党生日有感(4篇)2024-11-01
- 文化自信党员(5篇)2024-11-01
- 2024党员干部贿赂多少钱违法(3篇)2024-11-01
- 党管党员党管干部存在问题(2篇)2024-11-01
- 深入查摆在落实管党治党责任方面的不足(5篇)2024-11-01
- 党委班子画像报告(3篇)2024-11-01
相关文章:
- 2022高一化学知识点总结归纳2022-11-07
- 高三历史知识点归纳总结大全2022-11-08
- 高二年级化学知识点归纳整合(范文推荐)2022-11-08
- 2022年高二数学知识点总结梳理2022-11-08
- 2022年高一地理知识点摘要大全(精选文档)2022-11-08
- 高三物理知识点难点梳理大全【优秀范文】2022-11-08
- 2022年度高二化学重要知识点最新整合2022-11-08
- 高二数学知识点考点归纳(完整文档)2022-11-08
- 2022年度高一数学知识点总结最新(全文)2022-11-14
- 高中数学重要知识点大全(全文完整)2022-11-14
- 公司全体干部职工岗位职责约谈提纲3篇2022-12-14
- 2022年以案促改专题民主生活会发言提纲4篇2022-12-14
- 2023年大学生论文提纲3篇【完整版】2023-02-10
- 大学论文提纲6篇【优秀范文】2023-02-10
- 电子商务论文提纲8篇2023-02-10
- 2023年怎么写毕业论文提纲6篇(完整文档)2023-02-16
- 调查报告提纲3篇(范文推荐)2023-02-20
- 2023年度八年级生物期末复习提纲总结3篇【完整版】2023-02-20
- 九年级化学复习提纲6篇(2023年)2023-02-27
- 2023论文提纲格式和4篇2023-03-07
- 高一暑假学习计划3篇2022-11-06
- (完整文档)高一暑假学习计划3篇2022-11-07
- 2022年度有趣高一优秀作文(完整)2022-11-11
- 2022自我介绍高一优秀作文模板(全文)2022-11-14
- 2022年度高一历史教师工作总结优秀范本(2022年)2022-11-15
- 2022年有关春节高一优秀作文2022-11-21
- 2022年中国春节优秀作文高一(范文推荐)2022-11-21
- 2022年度高一班主任个人工作总结(2022年)2022-12-02
- 高一班主任工作总结(全文)2022-12-02
- 高一班主任年度工作总结10篇(精选文档)2022-12-02