昆博公文网
当前位置 首页 >专题范文 > 公文范文 >

2023年分数基本性质教学设计7篇

发布时间:2023-04-05 09:20:05 来源:网友投稿

下面是小编为大家整理的2023年分数基本性质教学设计7篇,供大家参考。

2023年分数基本性质教学设计7篇

作为一名默默奉献的教育工作者,有必要进行细致的教学设计准备工作,借助教学设计可以让教学工作更加有效地进行。优秀的教学设计都具备一些什么特点呢?读书破万卷下笔如有神,下面为您精心整理了7篇《分数的基本性质教学设计》,在大家参考的同时,也可以分享一下给您的好友哦。

《分数的基本性质》教学设计 篇一

教材分析

1.分数基本性质是约分和通分的基础,而约分、通分又是分数四则运算的重要基础,因此,理解分数基本性质显得尤为重要。而分数与除法的关系以及除法中的商不变规律,与这部分知识紧密联系,是学习这部分内容的基础。

2.教材安排了两个学习活动,让学生寻找相等的分数,通过活动使学生初步体验分数的大小相等关系,为观察发现分数的基本性质提供的丰富的学习资料,然后引导学生分别观察这两组相等的分数,寻找每组分数的分子、分母的变化规律,并展开充分的交流讨论,在此基础上归纳出:分数的分子和分母都乘或除以相同的数(零除外),分数的大小不变。

学情分析

学生已明确商不变规律,分数与除法的关系等知识,这些都为本课学习做了知识上的铺垫。五年级学生已经初步养成了合作学习的习惯,并具有了一定的分析和解决问题的能力,因此能够在教师的引导下完成“质疑—探索——释疑——应用”这一完整的学习过程。

因此在教学中,我主要采用引导学生探索以及小组合作学习相结合的方法,让学生探索出分数的基本性质,并会运用分数的基本性质把一个分数化成分母不同但大小相等的分数,能有效地提高教学效率。

教学目标

经历探索分数基本性质的过程,理解分数基本性质。

能运用分数基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。

经历观察、操作和讨论等学习活动,体验数学学习的乐趣。

教学重点和难点

理解分数基本性质,能运用分数基本性质转化分数。

教学过程

一、复习导入

二、探究新知

实践操作,探究规律

观察发现:初步概括分数基本性质

括归纳分数基本性质

三、课堂练习

四、课堂小结

出示复习题口答卡片, 复习商不变的规律、分数与除法的关系。

1、 讲述唐僧分饼的故事:“……贪吃的猪八戒抢着说要吃这个饼的9/12,孙悟空说要吃这个饼的6/8,沙僧说要吃这个饼的3/4。同学们可知道谁吃的饼最多?”

提出问题: 这些分数都相等吗?

观察这组相等的分数,你发现了什么?把你的发现说给同伴听。

分子、分母都乘或除以一个数,这个数可以是0吗?为什么?

1、课本P43的“试一试”

2、数学游戏:说出相等的分数3、课本P44的“练一练”第1~2、4

通过这节课的学习、你学会了那些知识

口答

小组讨论

拿出准备好的圆形纸片,折一折,画一画、涂一涂

小组讨论、交流

小组讨论、交流

做练习,完成后集体交流。

说说,读分数基本性质

复习旧知,为学习新知识作铺垫。

将例1改编成故事 提出问题,让学生对故事中的人物进行直观评价,为后续探究营造良好氛围。

让学生通过实践操作,激发学生参与学习探究的兴趣,通过合作探究,初步感知有些分数的分子、分母不同,但分数的大小却相等。

引导学生通过不同形式的观察,逐步总结出存在的规律,这样由浅入深,循序渐进,有利于学生探究学习知识。

在学生初步发现规律的基础上,进一步理解分数的基本性质,并对分数的基本性质进行全面概括。

让学生利用分数的基本性质解决问题,使学生对分数的基本性质理解的更深刻,同时体验解决问题的乐趣。

对本节课的所学知识的回顾,及所学知识点的总结。

板书设计(需要一直留在黑板上主板书)分数基本性质被除数和除数同时扩大或缩小相同的倍数(零除外),商不变,这就是商不变的规律分数的分子和分母都乘或除以相同的数(零除外),分数的大小不变,这叫做分数基本性质。

教学反思:

分数的基本性质在小学阶段是数运算的又一次质的飞跃与扩展,是重要的一个环节。我在引导学生观察探究中,重视学生的主动参与,多次组织学生小组讨论交流,让每个小组成员都能充分的说说自己的看法,相互交流,相互启迪,以感知分数的分子、分母是按一定的规律变化而分数大小不变。体现了理解与掌握数与数之间联系、变化的观点。

在本节课中,由于我对学困生关注度不高,,使得他们在分数基本性质应用的过程中产生了困难。小组合作探究中的小组学习亦要不断地完善。

分数的基本性质教学设计 篇二

一、教学目标

1、使学生理解和掌握分数的基本性质,能应用分数的基本性质把一个分数化成指定分母而大小不变的分数。

2、学生通过观察、比较、发现、归纳、应用等过程,经历探究分数的基本性质的过程,初步学习归纳概括的方法。

3、激发学生积极主动的情感状态,体验互相合作的乐趣。

二、教学重点

1、理解、掌握分数的基本性质,能正确应用分数的基本性质。

2、自主探究出分数的基本性质。

三、教学准备

课件、正方形的纸

四、教学设计过程

(一)迁移旧知.提出猜想

1、回忆旧知

根据“288÷24=12”填空

28.8÷2.4=

2880÷240=

2.88÷0.24=

0.288÷( )=12

被除数÷除数=( )

说一说你是根据什么算的?引导学生回忆商不变的性质?媒体出示:商不变的性质:

被除数和除数同时乘或除以相同的数(零除外),商不变。

2、提出猜想

既然分数与除法的关系这么紧密.除法有商不变性质,那分数是否也会有这样的性质,请大家大胆猜想一下。(学生可能根据商不变性质推导出分数的基本性质,学生汇报后投影出示:分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不变。)

(二)验证猜想,建构新知

1、你有什么办法来验证自己的猜想?(折一折、分一分、涂一涂等方法。)

2、出示学习提示。

学习提示

A、同桌合作,借助手中的学具,选择喜欢的方法,验证自己的猜想。

B、验证结束后,把你的验证方法和结论与小组同学交流。

3、汇报交流

指名3到4名同学到讲台前与全班同学交流自己的验证方法和过程,教师相机板书。

C、总结规律

1、师:请同学们看黑板上的两组分数,说说它们的分子和分母分别是按什么规律变化的。指名回答,教师板书。

2、总结:对于任何一个分数,只要满足:分数的分子和分母同时乘或除以相同的数,分数的大小就不会发生变化。

3、强调0除外。哪位同学将分数的分子和分母同时乘或除以0进行验证的?

如果有,问他是否验证出猜想,验证过程中出现了什么问题,如果没有,肯定他们的做法是对的,从而出示完整的规律:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。

师:为什么要0除外?

师:对于这句话,你是怎么理解的?(让学生互相讨论,并进行说明。)

教师以3/4为例说明分数的分子和分母同时乘或除以0是没有意义的。

师:再次出示分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。这叫做分数的基本性质。(板书课题)

D教学例2

把2/3和10/24都化为分母为12而大小不变的分数。

学生独立完成,集体订正。

(三)练习升华

1、填空

2、下面算式对吗?如果有错,错在哪里?

3、把相等的分数写在同一个圈里。

4、老师给出一个分数,同学们迅速说出和它相等的分数。

(四)作业

教材59页第9题。

(五)思维拓展

(六)总结延伸

师:这节课你有什么收获?

《分数的基本性质》教学设计 篇三

教学要求

①使学生理解分数的基本性质,并会应用分数的基本性质把不同分母的分数化成分母相同而大小不变的分数。

②培养学生观察、分析和抽象概括能力。

③渗透“事物之间是相互联系”的辩证唯物主义观点。

教学重点理解分数的基本性质。

教学用具每位学生准备三张同样的长方形纸条;教师:纸条、投影片等。

教学过程

一、创设情境

1.120÷30的商是多少?被除数和除数都扩大3倍,商是多少?被除数和除数都缩小10倍呢?

2.说一说:

(1)商不变的性质是什么?

(2)分数与除法的关系是什么?

3.填空。

1÷2=(1×2)÷(2×2)==。

二、揭示课题

让学生大胆猜测:在除法里有商不变的性质,在分数里会不会也有类似的性质存在呢?这个性质是什么呢?

随着学生的回答,教师板书课题:分数的基本性质。

三、探索研究

1.动手操作,验证性质。

(1)让学生拿出三张同样的长方形纸条,分别平均分成2份、4份、6份,并分别把其中的1份、2份、3份涂上色,把涂色的部分用分数表示出来。

(2)观察比较后引导学生得出:==

(3)从左往右看:==

由变成,平均分的份数和表示的份数有什么变化?

把平均分的份数和表示的份数都乘以2,就得到,即==(板书)。

把平均分的份数和表示的份数都乘以3,就得到,即:==(板书)。

引导学生初步小结得出:分数的分子、分母同时乘以相同的数,分数的大小不变。

(4)从右往左看:==

引导学生观察明确:的分子、分母同时除以2,得到。同理,的分子、分母同时除以3,也可以得到。

让学生再次归纳:分数的分子、分母同时除以相同的数,分数的大小不变。

(5)引导学生概括出分数的基本性质,并与前面的猜想相回应。

(6)提问:这里的“相同的数“,是不是任何数都可以呢?(补充板书:零除外)

2.分数的基本性质与商不变的性质的比较。

在除法里有商不变的性质,在分数里有分数的基本性质。

想一想:根据分数与除法的关系以及整数除法中商不变的性质,你能说明分数的基本性质吗?

3.学习把分数化成指定分母而大小不变的分数。

(1)出示例2,帮助学生理解题意。

(2)启发:要把和化成分母是12而大小不变的分数,分子应该怎样变化?变化的根据是什么?

(3)让学生在书上填空,请一名学生口答。

4.练习。教材第108页的做一做。

四、课堂实践。

练习二十三的1、3题。

五、课堂小结

1.这节课我们学习了什么内容?

2.什么是分数的基本性质?

六、课堂作业

练习二十三的第2题。

七、思考练习

练习二十三的第10题。

教学反思:

“分数的基本性质”是西师版小学数学五年级下册的内容,它是约分,通分的依据,对于以后学习比的基本性质也有很大的帮助,所以,分数的基本性质是本单元的教学重点课。这节课我大胆利用“猜想和验证”方法,留给学生足够的探索时间和广阔的思维空间,让学生得到的不仅是数学基本知识,更重要的是数学学习的方法,从而激励学生进一步地主动学习,产生我会学的成就感。目的是让学生学会学习,学会思考,学会创造,进而培养学生用数学的思想方法,思考并解决在实际生活中所遇到的各种问题,这也是学生适应未来生活必须的基本素质。

这节课是在学生已掌握了商不变的性质之后,并在已有应用经验的基础上进行的,我是这样设计教学的:

1、通过商不变的性质、除法与分数的关系的复习,帮助学生意识到商不变的变规律与新知识的联系,为新知识的学习做好必要的准备。让学生根据商不变的性质大胆猜想,分数的基本性质是什么?说出自己的想法。

2、充分发挥学生主体作用,引导学生自主探究。让学生通过折纸游戏,操作、观察、比较,验证自己的猜想。涂色部分可用不同的分数表示,从而培养学生的动手能力,以及观察问题、解决问题的能力。

3、运用知识,解决实际问题。为了把知识转化为能力,练习的设计注意了典型性、多样性、深刻性、灵活性。归纳总结出分数的基本性质后,先进行基本练习,深化对分数的基本性质认识。在学完整个新知以后,在进行综合练习,巩固提高。通过应用拓展,使学生加深对分数的基本性质的理解,并培养学生运用所学的知识解决实际问题的能力。

4、0除外的环节设计。在学生归纳出分数的基不性质后,缺少0除外这个难点,我设计了判断一个分数的分子和分母同时乘0,让学生通过练习,马上想到0不能做除数,在分数中分母不能为0,引出:分子和分母同时乘或除以相同的数,必须0除外,突破难点。

《分数的基本性质》教学设计 篇四

1.教材简析

《分数的基本性质》是苏教版小学数学教材第十册的内容之一,在小学数学学习中起着承前启后、举足轻重的作用,它既与整数除法的商不变性质有着内在的联系,也是后面进一步学习分数的计算、比的基本性质的基础。分数的基本性质是一种规律性知识,分数的分子分母变了,分数的大小会变吗?分数的分子分母如何变化,分数的大小不变呢?学生在这种“变”与“不变”中发现规律。

2.教材处理

以前,教师通常把《分数的基本性质》看作一种静态的。数学知识,教学时先用几个例子让学生较快地概括出规律,然后更多地通过精心设计的练习巩固应用规律,着眼于规律的结论和应用。随着课程改革的深入,教师们越来越重视学生获取知识的过程,但我们也看到这样的现象:问题较碎,步子较小,放手不够,探究的过程体现不够充分。《分数的基本性质》可不可以有别的教学思路呢?新的课程标准提出:“教师应向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法”。根据这一新的理念,我认为教师可以为学生创设一种大问题背景下的探索活动,使学生在一种动态的探索过程中自己发现分数的基本性质,从而体验发现真理的曲折和快乐,感受数学的思想方法,体会科学的学习方法。所以,教师的着眼点,不能只是规律的结论和应用,而应有意识地突出思想和方法。基于以上思考,我以让学生探究发现分数基本性质的过程为教学重点,创设了一种“猜想——验证——反思”的教学模式,以“猜想”贯穿全课,引导学生迁移旧知、大胆猜想——实验操作、验证猜想——质疑讨论、完善猜想等,把这一系列探究过程放大,把过程性目标”凸显出来。

设计意图:

本课主要本着遵循小学数学课程标准“创设问题情境提出问题解决问题建立数学模型解释数学模型运用数学模型拓展数学模型”的指导思想而设计的。

1、通过故事创设问题情境,贴近学生生活,有利于激发学生学习兴趣。

2、从故事情境中提出问题,体现数学来源于生活。

3、小组合作学习,共同探究解决问题,让学生充分体验知识产生的过程。

4、从几组分数中分析,找到分数的基本性质,从而初步建立数学模型。

5、设计有坡度的练习,穿插师生互动,生生互动,让整个运用知识的形式活泼有趣。、

6、在游戏活动中对数学知识进行拓展运用。

教学目标

1、知识与技能

(1)经历探索分数的基本性质的过程,理解分数的基本性质。

(2)能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。

2、过程与方法

(1) 经历观察、操作和讨论等学习活动,并在探索过程中,能进行有条理的思考,能对分数的基本性质作出简要的、合理的说明。

(2) 培养学生的观察、比较、归纳、总结概括能力。

(3)能根据解决问题的需要,收集有用的信息进行归纳,发展学生的归纳、推理能力。

3、情感态度与价值观

(1)经历观察、操作和讨论等数学学习活动,使学生进一步体验数学学习的乐趣。

(2)体验数学与日常生活密切相关。

教学重点

理解分数的基本性质

教学难点

能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数

教学准备

师:电脑课件 学生:圆纸片 长方形纸

教学步骤:

一、故事引人,揭示课题。

1、教师讲故事。

话说唐僧师徒四人去西天去取经,这天走在路上,唐僧感觉饿了,就叫孙悟空去化斋,孙悟空答应了声驾起筋斗云走了,不一会,他就带回了三块一样大的饼,唐僧说:三块饼,我们四个人怎么吃呢?孙悟空说:“你分给我一块饼的四分之一就行了” 唐僧就把第一块饼平均分成四块,给了一块给孙悟空。沙僧说:“我想要两块”

唐僧把第二块饼平均分成八块,给了2块给沙僧。猪八戒比较贪心,他说:“我要三块,我要三块”,于是唐僧把第三块饼又平均分成12块,给了猪八戒3块。同学们,你知道孙悟空、猪八戒、沙僧三人谁分的多吗?

[ 一上课,先听讲一段故事,学生非常乐意,并会立即被吸引。思考故事当中提出的问题,学生自然兴趣浓厚。通过故事设疑,激起了学生探求新知的欲望。]

2、组织讨论,动手操作。

(1)小组讨论,谁分的多

(2)拿出三张纸,分别涂出它们的1/4、2/8、3/12。

(3)比较涂色部分的大小,有什么发现,得出什么结论。

既然他们三个分得的饼同样多,那么表示它们分得饼的分数是什么关系呢?这三个分数什么变了,什么没有变?让学生小组讨论后答出:这三个分数是相等关系,1/4=2/8=3/12,它们平均分的份数和表示的份数也就是分数的分子和分母变化了,但分数的大小不变。

(4)教师演示

3、教学例1

(1)引导比较。

师问:这四个分数,为什么分母不同呢?前两个分数的分子为什么都是1?

你知道其中哪些分数是相等的吗?

根据学生回答板书:1/3=2/6=3/9

师追问:你是怎么知道这三个分数相等的?(图中观察出来的)

(2)师演示验证大小。

(3)完成“练一练”第1题

学生先涂色表示已知分数,再在右图中涂出相等部分。

完成填空后,说说怎么想的。

4、教学例2。

(1)组织操作。

师:取出正方形纸,先对折,用涂色部分表示它的1/2。

学生完成折纸、涂色。

师问:你能通过继续对折,找出和1/2相等的其它分数吗?

学生在小组中操作,教师巡视指导。

学生展开折法并汇报,可能出现的方法有:

连续对折两次,平均分成4份。如图:

1/2=1/4

②连续对折三次,平均分成8份。如图:

1/2=4/8

③连续对折四次,平均分成16份。

师追问:每次对折后,正方形被平均分成了多少份?涂色部分有多少份,可以用什么分数表示?

得到的这些分数与1/2相等吗?能不能再写一些与1/2相等的数?

板书:1/2=2/4=4/8=8/16=16/32……

(2)发现规律。

师:你有什么发现?(如学生观察有困难,可进行以下提示)

①、从左往右看,它们的分子、分母是怎样变化的?你有什么发现?

学生观察、思考,在小组中交流。

师问:观察例1中的1/3=2/6=3/9,有这样的规律吗?

分数的基本性质教学设计 篇五

教学目标:

知识与技能:理解和掌握分数的基本性质,知道分数基本性质与整数除法中商不变性质的关系。能运用分数的基本性质把一个分数化成分母相同而大小不变的分数;培养学生观察比较、抽象概括及动手实践的能力,进一步发展学生的思维。

过程与方法

经历探究分数基本性质的过程,感受“变与不变”,“转化”等数学思想方法。情感态度与价值观:激发学生积极主动的情感状态,养成注意倾听的习惯,体验互助合作的乐趣。

教学重点

理解和掌握分数的基本性质,会运用分数的基本性质。

教学难点

自主探究出分数的基本性质

教学准备:

PPT课件、每小组准备三个同样大小的圆形纸片、三张完全一样的长方形(正方形)纸、直尺、彩笔等。

教学流程:

一、故事导入激趣引思

引言:细心的同学一定听出来了,刚刚老师播放的是哪部动画片的主题歌?对,我们今天的学习就从西游记的故事说起。

讲故事:话说唐僧师徒四人去西天取经,一路上历经磨难。一天,他们走得又累又饿,幸好路过一个村庄,化缘得到三块同样大小的饼。唐僧心想:三块饼,四个人不太好分呀!但是很快他就想到了一个分饼的方案,他对徒弟们说:我准备将第一块饼,平均分成2份,八戒吃其中的二分之一;将第二块饼平均分成4份,沙和尚吃其中的四分之二;将第三块饼平均分成8份,悟空吃其中的八分之四,你们同意这样的分配方案吗?师父的话音未落,猪八戒便跳出来说:“我不同意这样的分法,师父你太偏心了,凭什么猴哥吃那么多有八分之四,而我却吃那么少才二分之一。同学们,请你们判断一下,猪八戒说的对吗,师父真的偏心吗?

生发表见解。

二、自主合作探索规律

1、反馈引导:1/2=2/4=4/8。“三个徒弟分得的饼一样多---等式---仔细瞧瞧这组分数等式的分子分母相同么?但是它们的大小却?再用变化的眼光瞧瞧,(师画正反向两箭头)我们发现分数的分子分母改变了,什么却没有变?师贴板帖分数可真与众不同呵!

2、提出探究任务:那如果我让们动手做或者联系生活实际想,像这样大小相等的分数,只有一组吗?你们能不能找出一些给老师看看?找之前请位同学为我们读一读小组合作学习要求: m..net

(1)每个小组找出一组大小相等的分数,并想办法证明这组分数大小相等。

(2)思考:在写分数的过程中你们发现了什么规律?

组内商量一下然后开始行动!

3、小组研究教师巡视

4、全班汇报

交流评价(教师相机板书)圆纸片汇报长方形纸汇报正方形纸汇报及联系一组人数说发现规律把每组数从左往右或者从右向左仔细观察你能发现分子分母的怎样的变化规律?(可以举例说演绎推理深入)随机更换贴图

板书课题:分数的基本性质打出幻灯

5、反思规律看书对照找出关键词要求重读共同读

6、引证规律:3/4=12/16刚刚动手做我们验证了这组大小相等的分数的正确性并由此发现了分数的基本性质那你能否利用分数与除法的关系以及整数除法中商不变性质,再一次说明分数的基本性质。

三、自学例题运用规律

过渡:同学们刚刚的精彩表现展示出了你们强大的学习能力,所以在接下来的一段时间里,老师请你们自学课本96页的例2并完成相应“练一练”。现在开始

生自学

集体评议:例2练一练1和2,请说说你的根据和想法!重点让学生说说根据什么,分母、分子是如何变化的。

四、多层练习巩固深化

1、判断对错并说明理由

2/9=8/36,4/9=2/3,3/4=3a/4a,5/10=3/6,1/5=4/8

2、把6/20,70/100,45/50,1/2,4/5化成分母相同而大小不变的分数

思考:分数的分母相同,能有什么作用?

3、圈分数游戏圈出与1/2相等的分数

4、对对碰与1/2,2/3,3/4生生组组师生互动

五、课堂小结课堂作业

结语:你看,运用数学知识玩游戏,也是乐趣无穷。这节课我们就上到这儿,

作业:余下来的时间请完成课本97页练习十八的1-3题,做在书上。

《分数的基本性质》教学设计 篇六

教学内容:

人教版小学数学第十册第107页至108页。

教学目标:

1、知识目标:通过教学使学生理解和掌握分数的基本性质,能利用它改变分数的分子和分母,而使分数的大小不变。

2、能力目标:培养学生的观察能力、动手操作能力和分析概括能力等。

3、情感目标:让学生在学习过程中养成互相帮助、团结协作的良好品德。

教学准备:

长方形纸片、彩笔、各种分数卡片。

教学过程:

一、创设情境,激发兴趣

1.课件示故事。同学们,今天是快乐的,老师祝愿同学们节日快乐!在我们欢庆自己的节日时,花果山圣地也早已是一派节日喜庆的气氛。

【六一节到了,猴山上张灯结彩,小猴们享受着节日的快乐。猴王给小猴们做了三块他们爱吃的饼。它先把第一块饼平均切成四块,分给第一只小猴贝贝一块。第二只小猴佳佳见到说:“太小了,我要两块。”猴王就把第二块饼平均切成八块,分给第二只小猴两块。第三只小猴丁丁急了,它抢着说:“我要三块,我要三块。”于是,猴王又把第三块饼平均切成十二块,分给第三只小猴丁丁三块。贝贝、佳佳见了,连忙说:“猴爷爷,不公平,不公平,我们要分得和丁丁的同样多。”】

“同学们,猴王真的分得不公平吗?”

二、动手操作、导入新课

同学们,这个故事告诉了我们什么?猜想一下猴王分得公平吗?为什么公平?我们平常怎样去做?让我们也来分分看。请每组拿出课前准备的三张长方形纸片,共同来分一分,并完成操作报告(课件出示操作报告)。请小组长分工一下,明确记录的同学。

任选一小组的同学台前展示实验报告,并汇报结论。

教师根据学生汇报板书:14=28=312

2.组织讨论。

(1)通过操作我们发现三只猴子分得的饼同样多,表示它们分得饼的分数是相等关系。那么,这三个分数什么变了,什么没有变?让学生小组讨论后答出:它们平均分的份数和表示的份数也就是分数的分子和分母变化了,但分数的大小不变。

(2)猴王把三块大小一样的饼分给小猴子一部分后,剩下的部分大小相等吗?你还能说出一组相等的分数吗?学生通过观察演示得出结论教师板书:34=68=912。

3.引入新课:黑板上二组相等的分数有什么共同的特点?学生回答后板书:分数的分子和分母, 分数的大小不变。虽然他们的分子和分母变化了,但是它们的大小却不变。那么他们的分子和分母变化有规律吗?我们今天就来共同探讨这个变化规律。

三、比较归纳,揭示规律。

请每组拿出探究报告,任意选择黑板上的二组相等分数中的一组,共同讨论、探究,并完成探究报告。

1.课件出示探究报告。

2.分组汇报,归纳性质。

(1)从左往右看,分子、分母的变化规律怎样?选择一组学生根据探究报告,到黑板上边说边用箭头表示出分子、分母的变化过程。

(根据学生回答板书:同时乘上 相同的数)

(2)从右往左看,分数的分子和分母又是按照什么规律变化的?

(根据学生的回答板书:除以 )

(3)有与这一组探究的分数不一样的吗?你们得出的规律是什么?

(4)综合刚才的探究,你发现什么规律?

根据学生的回答,揭示课题,

(……这叫做板书:分数的基本性质)

对这句话你还有什么要补充的?(补充“零除外”)

讨论:为什么性质中要规定“零除外”?

(红笔板书:零除外)

(5)齐读分数的基本性质。在分数的基本性质中,你认为要提醒大家注意些什么?(同时、相同的数、0除外)。为什么?你能举例说明吗?教师则根据学生回答,在相应的字下面点上着重号。

师生共同读出黑板上板书的分数基本性质(要求关键的字词要重读)。

3、智慧眼(下列的式子是否正确?为什么?)

(1)35=3×25=65 (生:35的分子与分母没有同时乘以2,分数的大小改变。)

(2)512=5÷512÷6=12 (生:512的分子除以5,分母除以6,除数的大小不同,分数的大小也不同)

(3)112=1×312÷3=34 (生:112的分子乘以3,而分母除以3,没有同时乘以或除以,分数的大小不相等。)

(4)25=2×x5×x=2x5x (生:x在这里代表任何数,当x=0时,分数的大小改变。)

4、示课件讨论:现在你知道猴王运用什么规律来分饼的?如果小猴子要四块,猴王怎么分才公平呢?用分数表示为?如果要五块呢?

三、回归书本,探源获知

1、浏览课本第107—108页的内容。

2、看了书,你又有什么收获?还有什么疑问吗?

3、师生答疑。

你会运用分数与除数的关系,以及整数除法中商不变的性质,说明分数的基本性质吗?

4、自主学习并完成例2,请二名学生说出思路。

四、多层练习,巩固深化。

1、热身房。35=3×()5×()=9()

824=8÷()24÷()=()3

学生口答后,要求说出是怎样想的?

分数的基本性质教学设计 篇七

教学目标:

1、理解分数的基本性质,并了解它与除法中商不变的规律之间的联系。

2、理解和掌握分数的基本性质。

3、较好的实现知识教育与思想教育的有效结合。

教学重点:

理解和掌握分数的基本性质。

教学难点:

能熟练、灵活地运用分数的基本性质。

教学过程:

一、创设情景

师:同学们,为了让你们了解到更多的科技知识,在科技周活动中,学校做了三块科普展板(投影出示教材中的三块展板)。同学们认真观察,你们能提出什么问题?

师:猜想对解决问题很重要,它们到底相不相等?下面以小组为单位,想办法来验证一下。

二、新授

师:同学们想了很多好的方法,哪个小组愿意汇报一下?

生1:我们组是用画图的方法来验证的。我们先画了三个大小一样的正方形表示三块展板,把它们分别平均分成2份、4份和8份,再分别去其中的1份、2份和4份涂上颜色(展示学生画的图)。通过比较我们发现,涂色部分的大小是相等的,所以

生2:我们组是用折纸的方法来验证的。我们先取了三根同样长的纸条,通过对折把它们分别平均分成2份、4份和8份,分别涂色表示(展示学生的折纸情况)。通过折纸我们组也发现(学生在小组中讨论、验证)

师:我们发现的这个规律,就是分数的基本性质。

同学们现在小组内总结一下,什么是分数的基本性质?

(学生认真讨论)

师:同学们汇报一下你们的讨论结果。

三、自主练习巩固提高

课本第80页1、2、3、题。

其中,第1题引导学生通过涂色和比较,加深对分数基本性质的直观感受。

第2题二生爬黑板板演,第3、4题学生自做。师巡视指导。

课堂小结:

一生小结,他生补充,教师评判。

以上就是为大家整理的7篇《分数的基本性质教学设计》,希望对您的写作有所帮助,更多范文样本、模板格式尽在。

推荐访问:教学设计 分数 性质 分数基本性质教学设计7篇 《分数的基本性质》教学设计 分数的再认识(一)教学设计

Top