昆博公文网
当前位置 首页 >专题范文 > 公文范文 >

2023年数学八年级上册知识点第一章6篇

发布时间:2023-04-06 14:45:07 来源:网友投稿

下面是小编为大家整理的2023年数学八年级上册知识点第一章6篇,供大家参考。

2023年数学八年级上册知识点第一章6篇

在日复一日的学习中,是不是经常追着老师要知识点?知识点是指某个模块知识的重点、核心内容、关键部分。想要一份整理好的知识点吗?读书破万卷下笔如有神,下面为您精心整理了6篇《数学八年级上册知识点第一章》,希望朋友们参阅后能够文思泉涌。

学好数学的方法有哪些 篇一

1学好初中数学课前预习是重点

数学解题思路和能力的培养主要在于课堂上,所以想要学好初中数学一定要重视数学的学习效率和提前预习。只有提前预习才知道自己哪里不会,这样在课堂上才会注意力集中不走神。同时在初中数学的课上,学生也要紧跟老师的解题思路,注意自己的解题思路和老师的有什么不同。尤其是基础知识和最基本的技能学习,课上数学老师讲完后,初中生要在课后及时复习,争取老师讲完每一节的知识后,学生都不要留下疑问。

2独立完成初中数学作业

在完成老师布置的作业时,初中生要学会自己能够独立完成,想要学好初中数学就要勤于思考,千万不能偷懒。平时对于自己弄不懂的题目和解题思路,不要放弃,静下心来认真分析和研究,尽量做到自己能够解决,实在是想不出来在问同学或者老师。对于初中数学的每一个学习阶段,都要学会进行整理和归纳。

数学学习方法诀窍 篇二

1细心地发掘概念和公式

很多同学对概念和公式不够重视,这类问题反映在三个方面:一是,对概念的理解只是停留在文字表面,对概念的特殊情况重视不够。例如,在代数式的概念(用字母或数字表示的式子是代数式)中,很多同学忽略了“单个字母或数字也是代数式”。

二是,对概念和公式一味的死记硬背,缺乏与实际题目的联系。这样就不能很好的将学到的知识点与解题联系起来。三是,一部分同学不重视对数学公式的记忆。记忆是理解的基础。如果你不能将公式烂熟于心,又怎能够在题目中熟练应用呢?

我们的建议是:更细心一点(观察特例),更深入一点(了解它在题目中的常见考点),更熟练一点(无论它以什么面目出现,我们都能够应用自如)。

2养成良好的解题习惯

要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。

在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平 时养成良好的解题习惯是非常重要的。

初中数学全等三角形的判定定理 篇三

⑴边边边:三边对应相等的两个三角形全等。

⑵边角边:两边和它们的夹角对应相等的两个三角形全等。

⑶角边角:两角和它们的夹边对应相等的两个三角形全等。

⑷角角边:两角和其中一个角的对边对应相等的两个三角形全等。

⑸斜边、直角边:斜边和一条直角边对应相等的两个直角三角形全等

八年级上册数学第一章知识点 篇四

因式分解

1、 因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解;注意:因式分解与乘法是相反的两个转化。

2、因式分解的方法:常用“提取公因式法”、“公式法”、“分组分解法”、“十字相乘法”。

3、公因式的确定:系数的公约数?相同因式的最低次幂。

注意公式:a+b=b+a; a-b=-(b-a); (a-b)2=(b-a)2; (a-b)3=-(b-a)3.

4、因式分解的公式:

(1)平方差公式: a2-b2=(a+ b)(a- b);

(2)完全平方公式: a2+2ab+b2=(a+b)2, a2-2ab+b2=(a-b)2.

5、因式分解的注意事项:

(1)选择因式分解方法的一般次序是:一 提取、二 公式、三 分组、四 十字;

(2)使用因式分解公式时要特别注意公式中的字母都具有整体性;

(3)因式分解的最后结果要求分解到每一个因式都不能分解为止;

(4)因式分解的最后结果要求每一个因式的首项符号为正;

(5)因式分解的最后结果要求加以整理;

(6)因式分解的最后结果要求相同因式写成乘方的形式。

6、因式分解的解题技巧:(1)换位整理,加括号或去括号整理;(2)提负号;(3)全变号;(4)换元;(5)配方;(6)www..com把相同的式子看作整体;(7)灵活分组;(8)提取分数系数;(9)展开部分括号或全部括号;(10)拆项或补项。

7、完全平方式:能化为(m+n)2的多项式叫完全平方式;对于二次三项式x2+px+q, 有“ x2+px+q是完全平方式 ? ”。

分式

1、分式:一般地,用A、B表示两个整式,A÷B就可以表示为 的形式,如果B中含有字母,式子 叫做分式。

2、有理式:整式与分式统称有理式;即 。

3、对于分式的两个重要判断:(1)若分式的分母为零,则分式无意义,反之有意义;(2)若分式的分子为零,而分母不为零,则分式的值为零;注意:若分式的分子为零,而分母也为零,则分式无意义。

4、分式的基本性质与应用:

(1)若分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变;

(2)注意:在分式中,分子、分母、分式本身的符号,改变其中任何两个,分式的值不变;

(3)繁分式化简时,采用分子分母同乘小分母的最小公倍数的方法,比较简单。

5、分式的约分:把一个分式的分子与分母的公因式约去,叫做分式的约分;注意:分式约分前经常需要先因式分解。

6、最简分式:一个分式的分子与分母没有公因式,这个分式叫做最简分式;注意:分式计算的最后结果要求化为最简分式。

7、分式的乘除法法则: 。

8、分式的乘方: 。

9、负整指数计算法则:

(1)公式: a0=1(a≠0), a-n= (a≠0);

(2)正整指数的运算法则都可用于负整指数计算;

(3)公式: , ;

(4)公式: (-1)-2=1, (-1)-3=-1.

10、分式的通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分;注意:分式的通分前要先确定最简公分母。

11、最简公分母的确定:系数的最小公倍数?相同因式的次幂。

12、同分母与异分母的分式加减法法则: 。

13、含有字母系数的一元一次方程:在方程ax+b=0(a≠0)中,x是未知数,a和b是用字母表示的已知数,对x来说,字母a是x的系数,叫做字母系数,字母b是常数项,我们称它为含有字母系数的一元一次方程。注意:在字母方程中,一般用a、b、c等表示已知数,用x、y、z等表示未知数。

14、公式变形:把一个公式从一种形式变换成另一种形式,叫做公式变形;注意:公式变形的本质就是解含有字母系数的方程。特别要注意:字母方程两边同时乘以含字母的代数式时,一般需要先确认这个代数式的值不为0.

15、分式方程:分母里含有未知数的方程叫做分式方程;注意:以前学过的,分母里不含未知数的方程是整式方程。

16、分式方程的增根:在解分式方程时,为了去分母,方程的两边同乘以了含有未知数的代数式,所以可能产生增根,故分式方程必须验增根;注意:在解方程时,方程的两边一般不要同时除以含未知数的代数式,因为可能丢根。

17、分式方程验增根的方法:把分式方程求出的根代入最简公分母(或分式方程的每个分母),若值为零,求出的根是增根,这时原方程无解;若值不为零,求出的根是原方程的解;注意:由此可判断,使分母的值为零的未知数的值可能是原方程的增根。

18、分式方程的应用:列分式方程解应用题与列整式方程解应用题的方法一样,但需要增加“验增根”的程序。

建立数学思维方式 篇五

到了初中,数学出现了很多新的知识点,也是重点考点和关键难点,比如系统性的开始学习几何知识,首次引入函数的概念并求解一般的线性函数问题,这些对于初中生来说既是全新的,又是有一定难度的。这就需要学生创新数学思维方式,紧跟教材进度和课堂进度,训练自己的数学思维尤其的几何图形的感觉,以及对函数的深刻理解。

数学八年级上册知识点第一章 篇六

1、勾股定理的内容:如果直角三角形的两直角边分别是a、b,斜边为c,那么a2+b2=c2.即直角三角形中两直角边的平方和等于斜边的平方。

注:勾最短的边、股较长的直角边、弦斜边。

勾股定理又叫毕达哥拉斯定理

2、勾股定理的逆定理:

如果三角形中两边的平方和等于第三边的平方,那么这个三角形是直角三角形。

3、勾股数:

满足a2 +b2=c2的三个正整数,称为勾股数。勾股数扩大相同倍数后,仍为勾股数。常用勾股数:3、4、5; 5、12、13;7、24、25;8、15、17。

4、勾股定理常常用来算线段长度,对于初中阶段的线段的计算起到很大的作用

例题精讲:

练习:

例1:若一个直角三角形三边的。长分别是三个连续的自然数,则这个三角形的周长为

解析:可知三边长度为3,4,5,因此周长为12

(变式)一个直角三角形的三边为三个连续偶数,则它的三边长分别为

解析:可知三边长度为6,8,10,则周长为24

例2:已知直角三角形的两边长分别为3、4,求第三边长。

解析:第一种情况:当直角边为3和4时,则斜边为5

第二种情况:当斜边长度为4时,一条直角边为3,则另一边为根号7

例3:一个直角三角形中,两直角边长分别为3和4,下列说法正确的是( )

A.斜边长为25

B.三角形周长为25

C.斜边长为5

D.三角形面积为20

解析:根据勾股定理,可知斜边长度为5,选择C

以上内容就是为您提供的6篇《数学八年级上册知识点第一章》,希望对您的写作有所帮助,更多范文样本、模板格式尽在。

推荐访问:知识点 数学 八年级上册 数学八年级上册知识点第一章6篇 学好数学的方法有哪些

Top