昆博公文网
当前位置 首页 >专题范文 > 公文范文 >

最新高中数学课教案,高三数学教案全套(五篇)

发布时间:2023-06-04 19:15:11 来源:网友投稿

下面是小编为大家整理的最新高中数学课教案,高三数学教案全套(五篇),供大家参考。

最新高中数学课教案,高三数学教案全套(五篇)

作为一名教职工,总归要编写教案,教案是教学蓝图,可以有效提高教学效率。那么教案应该怎么制定才合适呢?这里我给大家分享一些最新的教案范文,方便大家学习。

高中数学课教案 高三数学教案全套篇一

高三数学复习课一般采用对复习内容进行知识点的罗列整理、例题讲解、变式巩固、归纳小结的课堂模式。这种模式建立在教师对课程标准和考纲的深刻理解和丰富经验基础之上,优势在于知识系统性强、能突出复习的重点和便于操作,但也存在学生自主复习、主动探究不够的问题。特别是对于那些数学基础比较薄弱的学生,他们本身就缺乏对数学知识的系统了解,更不可能主动去整理每章节的知识要点和重点,只能依靠教师去总结罗列知识点,形成知识网络,让学生被动的接受数学知识的纵向和横向联系。

笔者认为,新课标理念下高三数学复习课模式应该体现在:第一层次是学生在头脑中对知识点和解题方法的简单再现;第二层次是通过一系列的学习活动融入了学生积极的思考,使得学生达到对知识理解的加深和应用能力的提高;第三层次解决相应问题中“容易出错和被忽略的问题”,加深印象,尽量在今后的学习中减少和避免类似的错误。我们可以借鉴这样的模式:教师有意设法让学生在活动中展现易犯的错案→学生自己评价判断、发现问题→师生共同分析、纠正错误、解决问题。这样的“三部曲”就很好的避免了教师主观以自己手(口)展现学生易犯的错误,让学生积极主动分析和解决问题,防止教师的“包办”和“灌输”。在这样的课堂上复习已不再是传统意义的“复习”,它不是把上过的课再上一遍,让学生体验到的也不是把走过的路再走一遍,而是有所创新,在已有知识和经验的基础上走一条似曾相识的新路,并从中感受到进步和成功的快乐。它是一个达成新知的连接点,用前瞻的眼光去回顾和总结“过去”,达到另一个新的高度。

一、复习内容

平面向量的概念及运算法则

二、复习重点

向量的概念及运算法则的运用及其用向量知识,实现几何与代数之间的等价转化。

三、具体教学过程

1.学生准备课前预习回家做作业。其具体步骤是:①相应知识的系统梳理;②典型例题的摘录;③搜集平时作业,测验作业中存在的典型错误;④提出针性训练的练习题;⑤准备思考题,以及家庭作业。学生的准备可以从中选择一项,学有余力的同学可以多选。

2.学生可以分为出题组、答题组和归纳组(每组3~4人),三个小组又可构成一个大的探究组,各小组的角色在其过程中可以互换;教师从旁引导,控制教学节奏,并有机、适时地对有争议的问题或引起认知冲突的部分作相应的释疑,最后选出具有代表性的题目和表达最完整的归纳展示给学生。

出题组:在教师的引导下,确立出题意图后,可以自编或在课本、资料中寻找适当的例题。

答题组:迅速给出题目答案或解题思路步骤(由学生自己讲解),同时确立该题所考察的知识点和方法,并互相讨论解题过程中的易错点和容易忽视的问题。

归纳组:对照相应的问题,归纳出解决问题的关键和方法及其需要注意的事项。并以书面的形式给出,可充分利用投影的方式展示给学生。

3.教学中教师按上述环节顺序,让每一环节准备相同内容,学生自己选择一人担任主讲,其余同学组成评议组,主讲讲解完后,由评议组补充、完善或评价、矫正……。

4.教师控制教学节奏,并有机、适时地对有争议的问题或引起认知冲突的部分作相应的释疑。

5.在学生自己完成这一复习环节后,师生共同完成教师的精选题例题的讲解,同样采用启发讨论式,尽可能地让学生自己完成问题的解答。

6.课尾教师进行点评、归纳、小结(最好由学生自己完成),并评选本课“主讲明星”与“最佳评议”。

四、案例分析及其反思

1.让学生走上讲台,既为学生提供展示才华的舞台,满足其表现欲,尝试成功感,又让学生亲历知识掌握的构建过程。

2.由于要自己完成课前的准备作业和讲解内容,迫使学生进行章节的全面复习,对知识进行系统整理,这一复习环节,却真正达到了学生自觉地学习,使学生由被动学习转化为主动学习,提高学习效率。

3.组织这样的课堂教学流程,培养了学生口才、组织能力、逻辑思维能力、应变能力、心理承受能力等等,促使学生的个性达到良性的发展。

4.由于改变了课堂的传统座位排法,学生得到了互相帮助的机会,学习较差的学生能直接得到学有余力的同学的帮助和指导,更容易掌握和理解所学的知识,调动兴趣,提高了学习能力。互帮互学为学生营造了一个轻松、愉快的学习氛围。打破教师出题,学生解答的单调教学模式。通过学生自己变式,充分体现学生的主体性,使他们对一类问题有根本性地掌握,起到以点带面的效果。通过以组题的形式让学生通过有目的的联想,探索习题之间的内在联系,明确问题产生的背景,领会问题的实质,进而找到相应的解题策略,培养学生的思维的灵活性和广阔性,进一步完善、深化学生的认知结构。

5、教学模式恰当,引人入胜

“探究讨论式”是一种常用的教学方法。然而,本课探索“向量的应用”却颇有难度,尤其是几何与代数之间的问题转化。为了突破这一难点,首先复习旧知识,预备铺垫,接着设计简单的几何图形中的代数求值问题。教师在思想方法上的点拔,思维层次上的递进,让学生分享自己成果的乐趣,体现了“学生是数学学习的主人,教师是数学学习的组织者、引领者与合作者。”的教学理念。整个教学设计,思路清楚,层次转换自然,点拨及时,自然流畅,引人入胜。

6、体现先进理念,合作探索

建构主义认为:学生的学习不是被动的接受,而是一种主动的学习,一种知识的重组或重新建构的过程。因此,学习方式的转变,对学生的学习至关重要,也是二期课改成败的要害。本课注重学生学习方式的转变,教者适时点拨,发现问题,培养探索精神。从轻易混淆的性质入手,让学生发现问题,出现迷惑,接着,对向量平行充要条件的研究,培养了学生思维的深刻性,通过概念的辨析,使学生对向量有了更深的理解,此时推出综合应用题,过渡自然,符合认知规律。同学探究,思维得到进一步的升华,攻克难点,培养了合作精神。通过展示研究成果,让学生感到爱好盎然而布满探索求知的愿望,学生的主体地位得到了淋漓尽致的发挥。体验成功的喜悦,分享快乐,提高了学习的积极性。

熟知,课堂教学“以教师为主导,以学生为主体”这句话好说难做。如何落在实处,本课做了有益的尝试。案例的设计,具有时代气息,以问题为先导,直接引导学生进入思考的境界。教案的设计说明,体现了教者“以学生发展为本的教学理念”。

《数学课程标准》指出:“教师应激发学生的积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能……”。这就是一次很好的机会,教师要鼓励、引导学生敢于质疑、敢于实践,培养学生主动探究问题的能力,转变学生学习方式,即变单一的传授方式为学生自主体验、探究等学习方式。

复习课上都有一个突出的矛盾,那就是时间太紧,既要处理足量的题目,又要充分展示学生的思维过程,二者似乎是很难兼顾。教师可采用“焦点访谈”法较好地解决这个问题,如:例2和例2的变式1的探究,因题目是“入口宽,上手易”,但在连续探究的过程中,在两种方法会得出两个相反的答案这一点上搁浅受阻(这一点被称为“焦点”,其余的则被称为“外围”)。这里教师不必在外围处花精力去进行浅表性的启发诱导,好钢要用在刀刃上,而要在焦点处发动学生探寻突破口,通过交流“访谈”,集中学生的智慧,让学生的思维在关键处闪光,能力在要害处增长,弱点在隐蔽处暴露,意志在细微处磨砺。

高中数学课教案 高三数学教案全套篇二

数学广角说课教案设计

教材分析:

我执教的内容是人教版小学数学四年级下册第八单元数学广角中的例1。本单元主要是渗透有关植树问题的一些思想方法,通过现实生活中一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后再用发现的规律解决生活中的一些简单实际问题。

例1是探讨关于一条线段的植树问题并且两端都要栽的情况,根据编者的意图,要让学生经历猜想、试验、推理等数学探索的过程,从简单的情况入手解决复杂的问题,让学生选用自己喜欢的方法来探究栽树的棵树和间隔数之间的关系,并启发学生透过现象发现规律,让学生初步体会解决植树问题的思想方法以及这种方法在解决实际问题中的应用。

设计理念:

本节课主要是让学生在解决实际问题的过程中发现规律,抽取出其中的数学模型,找到解决问题的有效方法,经历分析、思考的过程。因此,我这样设计:创设情境从学生身边事,引起学生兴趣;自主探索,构建数学模型;拓展应用,培养应用意识。为此,本课制定了三个教学目标:

1.通过探究发现一条线段上两端要种的植树问题的规律。

2.学生经历和体验“复杂问题简单化”的解题策略和方法。

3.让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。

教学重点:

引导学生从实际问题中探索并总结出棵树与间隔数之间的关系。

教学难点:

把现实生活中类似的问题同化为“植树问题”,并运用植树问题的思想方法解决这些实际问题。

说教法:在本节课的教学中,我根据教学内容的特点和学生的实际情况,安排了一次动手操作,引导学生积极参与,使学生在小组合作的学习活动中,加深对植树问题棵数与间隔数之间的关系的认识与理解。

1、关注学习起点。

学生是数学学习的主人,教师作为学生学习的组织者,引导者与合作者,应及时关注学生学习的起点。在教学中,我选取生活中的学生熟悉的事例,在教师的引导中让学生探究,,建立知识表象,使学生得到启迪,悟到方法。把学生的主动权交给学生,让课堂真正成为学生学习的舞台。

2、体验生活数学。

“数学来源于生活,而又应该为生活服务。”在学生已经发现两端要种的植树问题的规律后,我开放课堂时空,让学生从车站站点、上楼等问题,并通过课件让学生直观地认识生活中的许多事例看上去跟植树问题毫不相似,但是只要善于观察题中的数量关系,就明白它与植树问题的数量关系很相似,引导学生要灵活运用所学知识来解决生活中的一些实际问题。使学生充分感受到数学知识来源于生活,又回归于生活。

此外,我还进一步拓展了教学目标,在画图求解的过程中,让学生觉得这样画到100米麻烦,产生另辟蹊径的念头,使学生体验“复杂问题简单化”的解题过程。

说学法:本节课学生主要采用动手操作、合作交流的方法进行学习。

说教学流程:本节课我分四个流程进行教学推进,

一、 广告导入,感知“间隔”的含义

二、引导探究,发现“两端要种”的规律

1. 创设情境,提出问题。

通过在小路植树的现实问题情境,提出“共需多少棵树苗的问题”。学生在思考的过程中发现了三种不同的方法,到底哪一种方法好呢?引导学生通过画图实际种一种去检验。通过模拟种树,使学生体验到一棵一棵种到100米太麻烦了,于是老师介绍研究复杂问题的方法:遇到复杂问题想简单的,从简单问题入手去研究。

2.简单验证,发现规律。

通过前面的广告、斑马线等图,学生对棵树和段数的关系已有了一定的感性认识,再经过学生实际操作,为学生顺利发现并总结规律打下了基础。

三、通过儿歌的形式归纳规律。

这样一方面巩固刚发现的规律,另一方面使学生认识到植树问题的规律不仅仅能解决植树的问题,还能解决生活中很多类似的问题。

四、回归生活,应用规律。

多角度的应用练习巩固和拓展学生对植树问题的认识。

教学反思

反思整个教学过程,我认为这节课有以下几个特点:

一、创设浅显易懂的生活原型,让数学走近生活。

创设与学生的生活环境和知识背景密切相关的,学生感兴趣的"学习情境有利于学生积极主动地投入到数学活动中。

二、 注重学生的自主探索,体验探究之乐。

体验是学生从旧知识向隐含的新知识迁移的过程。教学中,我创设了情境,向学生提供多次体验的机会,为学生创设了一种民主、宽松、和谐的学习氛围,给了学生充分的时间与空间。

三、利用学生资源,加强生生合作

学生的认知起点与知识结构逻辑起点存在差异。生生之间的差异是学习的资源,这种资源应在小组交流的平台上得到充分的展示与合理的利用。

四、回归生活,应用规律。

多角度的应用练习巩固和拓展学生对植树问题的认识。

如果说生活经验是学习的基础,生生间的合作交流是学习的推动力,那么借助图形帮助理解是学生建构知识的一个拐杖。有了这根拐杖,学生们才能走得更稳、更好。因此,在教学过程中,我也注重对数形结合意识的渗透。

本节课还有许多的不足之处,能够与在座这么多的老师共同学习、交流,是一次难得的机会,希望在座的老师能多给我提一些宝贵的意见,帮助我成长。

高中数学课教案 高三数学教案全套篇三

角的度量练习课教案

一、教材简析:

本节课是在认识了角及量角器量角的基础上教学的。角的度量是测量教学中难点较大的一个知识点。上节课学生第一次认识量角器,第一次学习用量角器量角,学生掌握这部分知识还不是特别熟练,学习这部分内容为学生牢固掌握角的度量,为后面学习角的分类和画角打下基础。

二、教学目标:

1、通过练习,使学生巩固量角器量角的方法,能正确、熟练地测量指定角的度数。

2、通过练习,提高学生观察和动手操作的能力。

3、使学生能积极参与学习活动,培养学生细心的习惯并获得成功的体验,能运用角的知识描述相应的生活现象,感受用实验数据说明问题的实事求是的态度与方法。

三、教学重点:掌握正确的量角方法,熟练的测量角的度数。

教学难点:1、测量不同方位角,量角器的正确摆放;

2、量角时正确选择内外圈刻度,找准度数。

四、教具准备:教师用的量角器、课件

学具准备:量角器、三角板、画图铅笔、尺子

五、教学方法:比较教学法、探究式教学法

六、预设教学过程:

(一)复习:

交流怎样用量角器量角?师课件动画演示,重现巩固方法。

板书:两重一看

(设计意图:第一节课学生练习量不够,量角方法没有得到巩固,知识回生快,用课件动态的演示,可加深对量角方法的`理解,为本堂课的练习打下基础。此环节的设计,符合人的遗忘规律。)

(二)基本练习

1、看量角器上的刻度,说出各个角的度,完成p20第4题。

课件出示第一幅图,想想说说:这个角是多少度?怎么看的度数?让不同意见学生发表意见。明确量角时把与0刻度线重合的边作为始边,始边对的0刻度在内圈,另一条边就看内圈刻度,始边对的0刻度在外圈,另一条边就看外圈刻度。

学生说出另两幅图上角的度数。

(设计意图:本题练习主要是解决量角时读准另一条边的度数。学生交流不同的读法,在讨论中加深印象,巩固方法。)

2、量出下面各个角的度数,完成p20第5题。

先照着图中量角器的摆法量出不同方向的角的度数,初步感知调整量角器量角。

再调整量角器,将0刻度线对另一条边量出角的度数,进一步训练灵活使用量角器量角。

(设计意图:调整量角器、合理摆放量角器量角,对学生来讲比较困难。安排学生将角的两条边分别作为始边,重合0刻度线去量角,巩固了方法,同时真正训练了量角的灵活性。)

3、判断下面的量法是否正确,完成p20第6题,

全班交流,要求学生说出错误的地方,如:第1题点没对齐,第2题0刻度线没对齐,第3题另一条边没有对齐某条刻度线,第4题是正确的

量出各角的度数。

(设计意图:辨析可以使正确的方法更加巩固。)

4、出示图片,找一找图中的角,量一量。完成p20第7题。

用竞赛形式完成量角后交流结果。

(设计意图:竞赛形式可以调动学生积极性,也可以节约练习时间。)

(三)拓展练习

1、出示边比较短的两个角,量出度数。

学生尝试量角,可以合作。

交流明确:角的边不够量角器上刻度时,因为角的两条边是射线,可以将边先延长后再量。

(设计意图:让学生产生认知冲突,更能调动学生的学习兴趣,允许学生合作,契合新课标的要求,也激发了学生的表现欲望。)

2、量出下面每个图形中各个角的度数,说说有什么发现?完成p21第8题。

分工合作,量出四个多边形中每个角的度数。

讨论:有什么发现?(正多边形的每个角度数都相等。……)

(设计意图:本题要量的角较多,分工量出不同多边形的角,为后面的交流,发现规律节省了时间。)

3、探讨:经过纸上的2个点,3个点,4个点……中的每两个点画直线,最多可以画出几条直线?

先画一画,数一数,填一填。

点数23456……

直线数

引导得出规律:n个点,可以最多画n×(n-1)÷2条直线。

(设计意图:让学生经历探究的过程,发现隐含的规律,提升学生的能力,是新课标的要求。)

4、阅读你知道吗?介绍放风筝比赛规则,明白其中的道理。

(设计意图:数学生活化,做生活中的数学,是新课标的要求,体现了数学的价值,增强了学生的成就感。)

(四)课堂评价

小组内互相交流课堂上学到的知识和存在的困难。

七、板书设计:
角的度量练习

两重一看 量角器灵活摆放 角的边适当延长

高中数学课教案 高三数学教案全套篇四

加强集体备课

优化课堂教学

新的高考形势下,高三数学怎么去教,学生怎么去学

无论是教师还是学生都感到压力很大,针对这一问题备课组在学校和年级部的领导下,在姚老师和高老师以及笪老师的的具体指导下,制定了严密的教学计划,提出了优化课堂教学,强化集体备课,培养学生素质的具体要求.即优化课堂教学目标,规范教学程序,提高课堂效率,全面发展,培养学生的能力,为其自身的进一步发展打下良好的基础.

在集体备课中我们几位数学老师团结协作,发挥集体力量.

高三数学备课组,在资料的征订,测试题的命题,改卷中发现的问题交流,学生学习数学的状态等方面上,既有分工又有合作,既有统一要求又有各班实际情况,既有"学生容易错误"地方的交流又有典型例子的讨论,既有课例的探讨又有信息的交流.在任何地方,任何时间都有我们探讨,争议,交流的声音.集体备课后,各位教师根据自己班级学生的具体情况进行自我调整和重新精心备课,这样,总体上,集体备课把握住了正确的方向和统一了教学进度,对于各位教师来讲,又能发挥自己的特长,因材施教.

立足课本

夯实基础

高考复习,立足课本,夯实基础.复习时要求全面周到,注重教材的科学体系,打好"双基",准确掌握考试内容,做到复习不超纲,不做无用功,使复习更有针对性,细心推敲对高考内容四个不同层次的要求,准确掌握那些内容是要求了解的,那些内容是要求理解的,那些内容是要求掌握的,那些内容是要求灵活运用和综合运用的;细心推敲要考查的数学思想和数学方法;在复习基础知识的同时要注重能力的培养,要充分体现学生的主体地位,将学生的学习积极性充分调动起来,教学过程中,不仅要展现教师的分析思维,还要充分展现学生的思考思维,把教学活动体现为思维活动;同时还适当增加难度,教学起点总体要高,注重提优补差,新高考将更加注重对学生能力的考查,适当增加教学的难度,为更多优秀的学生脱颖而出提供了更多的机会和空间,有利于优秀的学生最大限度发挥自己的潜能,取得更好的成绩;对于差生充分利用辅导课的时间帮助他们分析学习上存在的问题,解决他们学习上的困难,培养他们学习数学的兴趣,激励他们勇于迎接挑战,不断挖掘潜力,最大限度提高他们的数学成绩.

因材施教

全面提高

我今年带得是一个文科,一个理科班.因此学生的整体情况不一样,同一班级的学生,层次差别也较大,给教学带来很大的难度,这就要求我从整体上把握教学目标,又要根据各班实际情况制定出具体要求,对不同层次的学生,应区别对待,这样,对课前预习,课堂训练,课后作业的布置和课后的辅导的内容也就因人而异,对不同班级,不同层次的学生提出不同的要求.在课堂提问上也要分层次,基础题一般由学生来做,以增强他们的信心,提高学习的兴趣,对能力较强的学生要把知识点扩展开来,充分挖掘他们的潜力,提高他们逻辑思维能力和分析问题,解决问题的能力.课后作业的布置,既有全体学生的必做题也有针对较强能力的学生的思考题,教师在课后对学生的辅导的内容也因人而异,让所有的学生都能有所收获,使不同层次的学生的能力都能得到提高.掌握学情,做到有的放矢.

深入学生中去了解学生的实际学习情况,学习水平和学习能力,及时调整教学内容和课堂容量,提前渗透数学思想方法,使教师的教和学生的学都是符合学生的学习实际情况,做到了有的放矢,让每一位同学在课堂学习中得到属于自己的收益.

优化练习

提高练习的有效性

知识的巩固,技能的熟练,能力的提高都需要通过适当而有效的练习才能实现;首先,练习题要精选,题量要适度,注意题目的典型性和层次性,以适应不同层次的学生;对练习要全批全改,做好学生的错题统计,对于错的较多的题目,找出错的原因.练习的讲评是高三数学教学的.一个重要的环节,为了最大限度地发挥课堂教学的效益,课堂的讲评要科学化,要注重教学的效果,不该讲的就不讲,该点拨的要点拨,该讲的内容一定要讲透;对于典型问题,要让学生板演,充分暴露学生的思维过程,加强教学的针对性.多做限时练习,有效的提高了学生的应试能力

.

加强应试指导

培养非智力因素

充分利用每一次练习,测试的机会,培养学生的应试技巧,提高学生的得分能力,如对选择题,填空题,要注意寻求合理,简洁的解题途经,要力争"保准求快",对解答题要规范做答,努力作到"会而对,对而全",减少无谓失分

,指导学生经常总结临场时的审题答题顺序,技巧,总结考前和考场上心理调节的做法与经验,力争找到适合自己的心理调节方式和临场审题,答题的具体方法,逐步提高自己的应试能力;帮助学生树立信心,纠正不良的答题习惯,优化答题策略,强化一些注意事项.注重"三点",培养学习习惯.

高三复习注意到低起点,重探究,求能力的同时,还注重抓住分析问题,解决问题中的信息点,易错点,得分点,培养良好的审题,解题习惯,养成规范作答,不容失分的习惯.

以上是我们

备课组在上学期的一些具体做法,也可以说是我们

的一些有益的经验.

<

高中数学课教案 高三数学教案全套篇五

一、教学内容分析

圆锥曲线的定义反映了圆锥曲线的本质属性,它是无数次实践后的高度抽象.恰当地利用定义解题,许多时候能以简驭繁.因此,在学习了椭圆、双曲线、抛物线的定义及标准方程、几何性质后,再一次强调定义,学会利用圆锥曲线定义来熟练的解题”。

二、学生学习情况分析

我所任教班级的学生参与课堂教学活动的积极性强,思维活跃,但计算能力较差,推理能力较弱,使用数学语言的表达能力也略显不足。

三、设计思想

由于这部分知识较为抽象,如果离开感性认识,容易使学生陷入困境,降低学习热情.在教学时,借助多媒体动画,引导学生主动发现问题、解决问题,主动参与教学,在轻松愉快的环境中发现、获取新知,提高教学效率.

四、教学目标

1.深刻理解并熟练掌握圆锥曲线的定义,能灵活应用定义解决问题;熟练掌握焦点坐标、顶点坐标、焦距、离心率、准线方程、渐近线、焦半径等概念和求法;能结合平面几何的基本知识求解圆锥曲线的方程。

2.通过对练习,强化对圆锥曲线定义的理解,提高分析、解决问题的能力;通过对问题的不断引申,精心设问,引导学生学习解题的一般方法。

3.借助多媒体辅助教学,激发学习数学的兴趣.

五、教学重点与难点:

教学重点

1.对圆锥曲线定义的理解

2.利用圆锥曲线的定义求“最值”

3.“定义法”求轨迹方程

教学难点:

巧用圆锥曲线定义解题

六、教学过程设计

【设计思路】

(一)开门见山,提出问题

一上课,我就直截了当地给出——

例题1:(1) 已知a(-2,0), b(2,0)动点m满足|ma|+|mb|=2,则点m的轨迹是( )。

(a)椭圆 (b)双曲线 (c)线段 (d)不存在

(2)已知动点 m(x,y)满足(x1)2(y2)2|3x4y|,则点m的轨迹是( )。

(a)椭圆 (b)双曲线 (c)抛物线 (d)两条相交直线

【设计意图】

定义是揭示概念内涵的逻辑方法,熟悉不同概念的不同定义方式,是学习和研究数学的一个必备条件,而通过一个阶段的学习之后,学生们对圆锥曲线的定义已有了一定的认识,他们是否能真正掌握它们的本质,是我本节课首先要弄清楚的问题。

为了加深学生对圆锥曲线定义理解,我以圆锥曲线的定义的运用为主线,精心准备了两道练习题。

【学情预设】

估计多数学生能够很快回答出正确答案,但是部分学生对于圆锥曲线的定义可能并未真正理解,因此,在学生们回答后,我将要求学生接着说出:若想答案是其他选项的话,条件要怎么改?这对于已学完圆锥曲线这部分知识的学生来说,并不是什么难事。但问题(2)就可能让学生们费一番周折—— 如果有学生提出:可以利用变形来解决问题,那么我就可以循着他的思路,先对原等式做变形:(x1)2(y2)2

5这样,很快就能得出正确结果。如若不然,我将启发他们从等式两端的式子|3x4y|

5

入手,考虑通过适当的变形,转化为学生们熟知的两个距离公式。

在对学生们的解答做出判断后,我将把问题引申为:该双曲线的中心坐标是 ,实轴长为 ,焦距为 。以深化对概念的理解。

(二)理解定义、解决问题

例2 (1)已知动圆a过定圆b:x2y26x70的圆心,且与定圆c:xy6x910 相内切,求△abc面积的最大值。

(2)在(1)的条件下,给定点p(-2,2), 求|pa|

【设计意图】

运用圆锥曲线定义中的数量关系进行转化,使问题化归为几何中求最大(小)值的模式,是解析几何问题中的一种常见题型,也是学生们比较容易混淆的一类问题。例2的设置就是为了方便学生的辨析。

【学情预设】

根据以往的经验,多数学生看上去都能顺利解答本题,但真正能完整解答的可能并不多。事实上,解决本题的关键在于能准确写出点a的轨迹,有了练习题1的铺垫,这个问题对学生们来讲就显得颇为简单,因此面对例2(1),多数学生应该能准确给出解答,但是对于例2(2)这样相对比较陌生的问题,学生就无从下手。我提醒学生把3/5和离心率联系起来,这样就容易和第二定义联系起来,从而找到解决本题的突破口。

(三)自主探究、深化认识

如果时间允许,练习题将为学生们提供一次数学猜想、试验的机会——

练习:设点q是圆c:(x1)2225|ab|的最小值。

3y225上动点,点a(1,0)是圆内一点,aq的垂直平分线与cq交于点m,求点m的轨迹方程。

引申:若将点a移到圆c外,点m的轨迹会是什么?

【设计意图】 练习题设置的目的是为学生课外自主探究学习提供平台,当然,如果课堂上时间允许的话,

可借助“多媒体课件”,引导学生对自己的结论进行验证。

推荐访问:全套 高中数学 课教案 最新高中数学课教案 高三数学教案全套(五篇) 高三数学优秀教案范例

Top