体积单位教学设计热门20篇(完整文档)
体积单位的教学设计第1篇教学目标1、结合实践活动,认识体积、容积单位之间的进率,会进行体积、容积单位之间的换算。2、在观察,操作过程中,发展空间观念。教学重点会进行体积、容积单位之间的换算。教学难点体下面是小编为大家整理的体积单位教学设计热门20篇,供大家参考。
体积单位的教学设计 第1篇
教学目标
1、结合实践活动,认识体积、容积单位之间的进率,会进行体积、容积单位之间的换算。
2、在观察,操作过程中,发展空间观念。
教学重点
会进行体积、容积单位之间的换算。
教学难点
体积、容积单位之间的换算。
教具准备
小正方体、量杯、1分米3盒子。
教师指导与教学过程
学生学习活动过程
设计意图
一、导入:
1、出示1dm3的盒子,
提问:这个盒子可以放多少个体积为1cm3的正方体?
2、摆一摆
引导学生摆设小正方体。
学生通过摆设,得出:
1分米3=1000厘米3
1升=1000毫升
二、试一试
1、引导学生完成试一试第1题
提问:你是怎样得出来的?
学生进行猜测,并说一说自己的猜测理由。
1排摆10个
每层可以摆多少排?算一算,每层可以摆多少个?(10×10×=100个)
1分米=(10)厘米
盒子里可以摆几层?
算一算,1dm3的盒子里可装多少个1cm3的小正方体?
10×10×10=1000
根据1米=10分米
引导学生通过实际操作,结合实际操作模型,认识和理解厘米3和分米3之间的进率。
结合厘米3、分米3与升、毫升之间的关系,推导公式:
1升=1000毫升
教师指导与教学过程
学生学习活动过程
设计意图
让学生通过填一填,比一比:
了解长度、面积、体积单位之间的联系与区别。
三、练一练
1、学生练习
2、反馈
计算1m3=Udm3
学生计算:
10×10×10=1000分米3
得出:1米3=1000分米3
学生分析长度、面积、体积之间的关系。
1、学生先填一填。
2、让学生说说思考的方法和过程。
让学生通过分析,比较从而解决问题,了解长度、面积、体积单位之间的联系与区别。
体积单位的教学设计 第2篇
设计说明
本节课是在学生认识了长方体和正方体,空间观念有了进一步发展的基础上进行教学的,在教学设计上有以下特点:
1.创设情境,激发探索欲望。
凡是富有成效的学习,必须对要学习的内容具有浓厚的兴趣,而且能够在学习活动中感到愉悦。要让学生主动学习,激发他们的学习兴趣是关键。因此,本教学设计通过“乌鸦喝水”的故事情境引入,激发学生的学习兴趣,感悟体积的概念,同时借助学生所熟悉的物体,感知物体体积的大小,建立体积单位的表象,让学生在愉悦的情境中掌握新知。
2.在实践中掌握体积的概念和体积单位。
在实践活动中获取知识是《数学课程标准》中倡导的学习方式。本设计首先让学生通过实验的方法建立体积的概念,再通过观察与感知,建立常用的"体积单位的表象,在亲身经历和体验中理解体积的概念和体积单位。这样的设计使学生充分参与了学习的过程,便于知识的理解和记忆。
课前准备
教师准备PPT课件两个同样大小的玻璃杯两个大小不同的石头1cm3、1dm3、1m3的正方体模型
教学过程
⊙创设情境,揭示体积的概念
1.激趣引入。
(1)同学们,你们知道世界上最聪明的鸟是什么吗?(是乌鸦)据动物行为学专家研究,乌鸦是除人类以外具有一流智商的动物,其综合智力大致与家犬的智力水平相当,“乌鸦喝水”的故事就反映了其思维的巧妙。同学们,你们听过“乌鸦喝水”的故事吗?谁愿意给大家讲一讲?
指名看图讲故事。
(2)乌鸦是怎么喝到水的?
预设
乌鸦把石头放进瓶子里,瓶子里的水就升上来了,这样乌鸦就喝到水了。
(3)为什么把石头放进瓶子里,瓶子里的水就升上来了?
引导学生说出石头占了水的空间,所以把水挤上来了。
设计意图:通过故事引入,激发学生的学习兴趣,初步建立体积概念的表象。
2.实验证明。
教师演示:拿两个同样大小的玻璃杯,先往一个杯子里倒满水,取一块石头放入另一个杯子,再把第一个杯子里的水倒入第二个杯子里,让学生看会出现什么情况,并提问:为什么会这样?
3.揭示体积。
(1)教师出示两个大小不同的石头,提问:这两个石头所占的空间一样吗?哪个占的空间大些?怎样用实验证明呢?
预设
生:把两个石头浸没在装有同样多的水的杯子中,水面上升多的占的空间大,水面上升少的占的空间小。
师:那你做一个实验给大家看看好吗?
(2)试一试。
找一名学生做实验,其他学生观察,通过实验让学生知道两个石头所占的空间有大有小。
⊙创设矛盾情境,引出体积单位
1.比较两个长方体的大小。
有的物体可以通过观察来比较它们的体积的大小,下面有两个长方体,你们能比较出它们的大小吗?(课件出示两个体积相近的长方体)
学生出现争论。(有的说能,有的说不好比较)
师:到底谁大谁小?为什么?(课件展示将它们分成若干个大小相同的小正方体)
预设
因为左边的长方体被平均分成了16个小正方体,而右边的长方体被平均分成了15个小正方体,而且小正方体的大小相同,所以左边的长方体比右边的长方体大。
师:为什么要分成大小相同的小正方体呢?
(引导学生说出因为分成的每个小正方体的大小相同,这样就好比较了)
2.认识常用的体积单位。
(1)提出自学要求。
师:计量长度需要长度单位,计量面积需要面积单位,我们计量体积也需要体积单位。为了更准确地计量出物体体积的大小,我们可以像图中这样用同样大小的正方体作为体积单位。请大家阅读教材,说一说常用的体积单位有哪些。
(2)学生阅读后汇报。
①1立方厘米有多大?怎样记住它?请具体说说,生活中有哪些物体的体积大约是1立方厘米?(出示1立方厘米的小正方体让学生观察)你知道了什么?哪些物体的体积比较适合用立方厘米作单位?(1立方厘米约一个手指尖的大小)
②1立方分米有多大?什么样的正方体的体积是1立方分米?(出示1立方分米的正方体,让学生感受其大小)你还见过哪些物体的体积大约是1立方分米?请用手势表示出1立方分米的大小。(1立方分米约一个粉笔盒的大小)
③1立方米有多大?什么样的正方体的体积是1立方米?出示1立方米的正方体框架,让学生看一看,具体感受一下1立方米的正方体大约有多大,举例说说生活中哪些物体的体积大约是1立方米。
(3)再次感悟。
请同学们闭上眼睛,再次感受一下1立方厘米、1立方分米和1立方米的大小,哪个比较大?哪个比较小?
体积单位的教学设计 第3篇
教学目标:
1、结合具体事例,经历认识体积单位之间进率的过程。
2、知道1立方分米=1000立方厘米、1立方米=1000立方分米,会进行简单的体积单位换算。
3、在探索体积单位进率的过程中,获得积极的学习的体验,增强学好数学的信心。
教学重点和难点:
体积单位进率和单位之间的互化。
教学过程:
一、教学体积单位间的进率
1、复习相关旧知1平方分米=100平方厘米的推导过程
(1)提问:“1平方分米等于多少平方厘米?想想是怎么推导出来的?请画在边长是1分米的正方形纸上。”
学生6人一组,回忆并再次经历1平方分米=100平方厘米的推导过程。
(2)展示学生的推导过程,可请1~2名学生代表他们的小组上台述说,并将1平方分米=100平方厘米的示意图──将边长1分米的正方体纸盒画上100个边长是1厘米的小正方形展示出来。
2、推导1立方分米=1000立方厘米
(1)提问:“1立方分米等于多少立方厘米?你们能应用类似的方法推导出来吗?”要求每个小组将推出来的结果用1立方分米的正方体纸盒表示出来。
学生6人一组,进行探索、推导.教师巡视各组情况并进行指导:让每个学生在1平方分米的纸上画出100个小格,然后贴在棱长1分米的正方体盒块的6个面上.这样,就得到一个1立方分米=1000立方厘米的数学模型。
(2)展示推导过程
请1~2名学生上台述说他们的推导过程:正方体棱长1分米,也就是10厘米,体积就是(10×10×10)立方厘米。
(3)全班归纳总结:教师用课件动态展示将一个棱长1分米的正方体分割成1000个棱长1立方厘米的过程,并在示意图下醒目地写上:1立方分米=1000立方厘米。
3、推导1立方米=1000立方分米
(1)提问:“不用操作,你能想出1立方米等于多少立方分米吗?”
(2)学生独立思考.可提示:在脑子里想一个棱长是1米的正方体。再将这个正方体分割成棱长是1分米的小正方体,想想可分割多少个?
(3)学生先在小组交流自己的想法,然后在全班交流,师生共同归纳出:1立方米=1000立方分米
4、总结相邻两个体积单位间的进率.
(1)提问:你学过哪些体积单位?请按从高到低的顺序把它排列出来,然后说出每个体积单位的相邻单位。
(2)引导学生观察:1立方分米=1000立方厘米
1立方米=1000立方分米
并想一想:相邻两个体积单位之间的进率是多少?想好后在书上填空。
5、构建长度、面积和体积单位的计量系统。
(1)让学生说一说,到目前为止,所学的长度、面积和体积单位各有哪些,它们分别是计量物体的什么的?
(长度单位是用来计量物体长度的;
面积单位是用来计量物体表面大小的;
体积单位是用来计量物体所占空间大小的。)
(2)提问:“长度、面积和体积单位,它们相邻两个单位间的进率相同吗?”学生回答后将书上第119页上的表格填完整。
二、练一练1。
(1)引导学生认真审题:将6立方米、8000立方分米改写成多少立方分米,也就是要将高级体积单位的名数改写成低级体积单位的名数。
(2)放手让学生自己思考解题的方法.
(3)引导学生归纳将高级体积单位的名数改写成相邻的低级体积单位的名数的一般方法(师板书):
高级体积单位的名数×1000=相邻的低级体积单位的名数
三、练一练2
四、小结
引导学生回忆本节课所学主要内容。回忆时可按本节课所学知识的顺序来叙述。这样,学生一般能概括:本节课学习了体积单位之间的进率,知道1立方米=1000立方分米,1立方分米=1000立方厘米;
会应用体积之间的进率进行体积单位名数的改写,在解决实际问题时能正确应用。
板书设计:
体积单位间的进率
1立方分米=1000立方厘米
1立方米=1000立方分米
高级体积单位的名数相邻的低级体积单位的名数
体积单位的教学设计 第4篇
设计说明
体积单位的换算是在学生认识了体积单位,学习了长方体、正方体的体积计算公式后进行教学的。引导学生通过实际操作,结合实际模型理解立方厘米和立方分米之间的进率。为了更好地学习本节课的内容,本节课在教学设计上主要体现以下两个特点:
1.重视学生的自主猜测、主动探究。
在教学中,我先让学生猜想相邻体积单位间的进率,再通过验证发现常用的相邻体积单位间的进率是1000。这一过程充分体现了学生的主体作用,既掌握了知识,又培养了学生发现问题、提出问题、分析问题和解决问题的能力。
2.重视转化、推算等方法。
为了让学生明确体积单位间的进率,本节课先对旧知识进行复习,借以引导学生利用转化、类推的方法,让学生提出猜想,然后通过合作验证等活动得到结论,这样既让学生掌握了数学知识,又提高了学生解决问题的能力。
课前准备
教师准备 PPT课件、长方体纸盒
学生准备 小正方体木块
教学过程
⊙复习导入
1.提出问题。
(1)回忆:常用的长度单位有哪些?常用的相邻两个长度单位之间的进率是多少?(米、分米、厘米 10)
(2)回忆:常用的面积单位有哪些?常用的相邻两个面积单位之间的进率是多少?(平方米、平方分米、平方厘米 100)
(3)提问:我们认识的体积单位有哪些?(立方米、立方分米、立方厘米)
2.设疑引入。
你能猜出常用的相邻两个体积单位间的进率是多少吗?
设计意图:引导学生回忆和整理已有知识,并提出问题——你能猜出常用的相邻两个体积单位间的进率是多少吗,激发学生的求知欲和好奇心,为学习新知做好铺垫。
⊙自主探索,验证猜测
1.再现问题。
大胆猜测一下,常用的相邻两个体积单位间的进率可能是多少?
(学生猜测进率可能是1000)
2.探究验证。
师:常用的相邻两个体积单位间的进率是不是1000呢?需要我们进行验证。下面请各小组合作探究“1分米3=1000厘米3”。
(1)学生6人一组进行探究。
(要求:①各组长拿出体积为1分米3的小正方体,各位同学拿出体积为1厘米3的小正方体。②先讨论探究的方法,再共同找出答案)
(2)全班交流。
预设
①操作验证——摆:我们发现1分米3=1000厘米3。我们把10个体积为1厘米3的小正方体摆成一排,摆10排正好是一层,这一层小正方体的体积和就是100厘米3。摆这样的10层就得到一个体积为1分米3的大正方体。这个大正方体的体积就是10个100厘米3,也就是1000厘米3。
(学生汇报后,用课件展示摆的过程)
②操作验证——切:我们组的想法是把体积为1分米3的大正方体切成若干块体积为1厘米3的小正方体。我们比了比,沿着大正方体的长、宽、高各可以切成10块,10×10×10=1000(块),所以1分米3=1000厘米3。
③推理验证——算:我们小组是算出来的。把体积为1分米3的正方体的棱长用厘米作单位,棱长就是10厘米,根据正方体的体积计算公式,10×10×10=1000(厘米3),所以1分米3=1000厘米3。
④利用知识间的联系进行验证——想:1分米3=1升,1厘米3=1毫升,而1升=1000毫升,所以1分米3=1000厘米3。
(3)教师小结:大家已经验证了1分米3=1000厘米3。想一想,用同样的方法,你能推算出1米3等于多少立方分米吗?
学生独立思考,并全班交流,然后教师指名说一说推导过程。
[板书:1米3=(1000)分米3]
师:你能说一说,常用的相邻两个体积单位间的进率是多少吗?
小结:常用的相邻两个体积单位间的进率是1000。
3.归纳总结。
师:同学们通过摆、切、算等方法验证了1分米3=1000厘米3,1米3=1000分米3,共同验证了“常用的相邻两个体积单位间的进率是1000”这个猜想。
(板书:1分米3=1000厘米3,1米3=1000分米3)
你还能联想到什么?(液体的体积单位:1升=1000毫升,1L=1dm3)
体积单位的教学设计 第5篇
【教学内容】
体积单位间的进率(课本第34—35页内容)。
【教学目标】
1、通过体积单位之间的进率的指导,使学生掌握体积单位之间的进率,并会进行名数的 改写。
2、使学生学会用名数的改写解决一些简单的实际问题。
3、培养学生根据具体情况灵活应用不同的单位进行计算的能力。
【重点难点】
掌握名数的改写方法。
【复习导入】
1、填一填。
1米=( )分米
1分米=( )厘米 1平方米=( )平方分米
1平方分米=( )平方厘米
2、说一说常用的体积单位有哪些?
【新课讲授】
1、学习体积单位间的进率。
(1)老师出示教材第34页例2:一个棱长为1dm的正方体,体积是1dm3。
想一想:它的体积是多少立方厘米?
(2)学生读题,理解题意。
(3)老师出示棱长为1dm的正方体模型。
提问:它的体积用分米作单位是1dm3,如果用厘米作单位,这个正方体的棱长是多少厘米?(棱长是10cm)
(4)计算。
请学生想一想,根据正方体体积的计算公式,能不能算出这个正方体体积是多少立方厘米? 学生先交流,再独立完成,然后请学生说出计算方法和计算过程,学生可能会说: ①如果把正方体的棱长看作是10cm,就可以把它切成1000块1cm3的正方体。
②正方体的棱长是1dm,它的底面积是1dm2,也就是100cm2,再根据底面积×高,也就是100×10=1000cm3,得出它的体积。
老师根据学生的回答,板书:V=a3 10×10×10=1000(cm3) 1dm3=1000cm3
(5)根据推导,请学生说出立方分米和立方厘米之间的进率是多少? 1立方分米=1000立方厘米(老师板书)
(6)你们能够推算出1立方米和1立方分米的关系吗?学生尝试完成。
老师板书:1立方米=1000立方分米
(7)观察板书内容。
想一想:相邻两个体积单位之间的进率存在着怎样的关系?通过观察,学生发现:相邻的两个体积单位之间的进率都是1000。
2、体积单位,面积单位,长度单位的比较。
(1)长度单位:米、分米、厘米,相邻两个单位之间的进率是十。
(2)面积单位:平方米、平方分米、平方厘米,相邻两个单位之间的进率是一百。
(3)体积
单位:立方米、立方分米、立方厘米,相邻两个单位之间的进率是一千。
3、学习体积单位名数的改写。
(1)回忆:怎样把高级单位的名数变换成低级单位的名数?(要乘进率)怎样把低级单位的名数变换成高级单位的名数?(要除以进率)
(2)学习教材第35页的例3。
板书:(1)3、8m3是多少立方分米?
(2)2400cm3是多少立方分米? 请学生尝试独立解答,老师巡视。
指名让学生说一说是怎样做的。
板书:3、8m3=(3800)dm3
2400cm3=(2、4)dm3 想: 1m3 =( )dm3
想:( ) cm3=1dm3 (3)学习教材第35页的例4。
出示例4,让学生先读题,理解题意:明确箱子上的尺寸是这个长方体的长、宽、高。请学生说出这个箱子的长、宽、高各是多少? 学生独立思考,然后解答,指名板演。
V=abh=50×30×40=60000(cm3)=60(dm3)=0、06(m3)
【巩固练习】完成课本第35页的“做一做”第1、2题。学生完成后,要求他们口述解答的过程。第2题指名学生板演。
【课堂小结】
今天我们学习了哪些内容?你有什么收获?
【板书设计】
体积单位间的进率 长度单位:1米=(10)分米
1分米=(10)厘米 面积单位:1平方米=(100)平方分米
1平方分米=(100)平方厘米 体积单位:1立方米=(1000)立方分米
1立方分米=(1000)立方厘米
体积单位的教学设计 第6篇
教学目标:
结合实践活动,认识体积、容积单位之间的进率,会进行体积、容积单位之间的换算。
能力目标:
在观察、操作中,发展空间观念。
情感目标:
学生想探究问题,愿意和同伴进行合作交流;
乐于用学过的知识解决生活中的相关的实际问题。
教学重点、难点:
观察、操作中会进行体积、容积单位之间的换算。
教学策略:
教师引导学生进行自主探究。
教学准备:
图表课件
教学过程:
一、导入新课:同学们上节课我们学习了长方体的体积,哪个同学起来说一下体积单位有哪些?引出体积单位。
二、教学新知:
1、让学生利用手中的教具摆出正方体。
1排摆10个,每层正好摆10排,也就是说,每层可以摆100个。高是1分米=10厘米,盒子里正好摆10层。即1分米3 = 1000厘米3, 1升 = 1000毫升。
2、用以上方式教学立方米与立方分米之间的进率,即体积为1米3的正方体,它的棱长为1米;
也可看成是棱长为10分米的正方体,它的体积是10×10×10=1000分米3,1米3 =1000分米3,1 m3 = 1000 dm3。
3、填一填表格,比一比了解长度、面积、体积单位之间的联系和区别。
单位
相邻两个单位之间的进率
长度
米、()、厘米
10
面积
米2、()、厘米2
体积
米3、()厘米3
4、课堂练习
(1)先让学生独立填一填,再选几道让学生说说思考的方法与过程。
(2)可以让学生通过计算来分析、比较从而解决问题。
通过计算第三种包装比较合算。如果学生有其他的比较方式,只要合理,教师应给予肯定和鼓励。
(3)先让学生联系生活经验,对电视机包装箱上“60×50×40”这个数据信息进行解释,然后再让学生说说自己的想法并计算。体积是60×50×40=120000(立方厘米)
(4)先让学生独立计算,再说说是怎么想的,实际上就是求1.5米高的水的"体积。50×20×1.5=1500(立方米)
四、课堂小结:
学习了这节课,同学们有什么感受和体会?
板书设计:
1分米3 = 1000厘米3
1升 = 1000毫升
1米3 = 1000 分米3
1m3 = 1000 dm3
体积单位的教学设计 第7篇
教学目标:
1、通过实验,使学生经历猜测、验证等活动,知道什么是体积,了解立方厘米、立方分米、立方米等常用的体积单位。初步估算物体的体积。
2、培养学生的观察、判断和概括能力及空间观念。
3、使学生在具体的问题情境中,经历探究、类推、验证等学习活动过程,增强空间观念,发展数学思考。
教学重点:
理解体积的含义,帮助学生建立1立方厘米、1立方分米、1立方米的大小表象。
教学难点:
能正确应用体积单位估算常见的物体的体积。
教学过程:
一、故事导入
师:同学们知道《乌鸦喝水》的故事吗?谁能简单的给大家说说这个故事的经过?
(指名学生讲故事)
师:为什么往瓶内放入一些石子以后,水面会上升呢?
(生:石子占了一部分的空间,所以水面上升了。)
师:是这样吗?下面我们来做个实验。
二、探究新知
1、实验探究
师:老师这儿有三个一样的杯子,里面装了同样多的水。请同学们仔细观察,我把手中的这个小玩具放在2号杯子里。(操作)
师:你有什么发现?这说明了什么?
(引导学生说出:水面上升了,因为小玩具占了一部分空间。)
师:请同学们想一想,如果我把手中的这个墨水瓶放进3号杯子里,和2号杯子相比,又会有什么变化呢?下面请同学们仔细观察仔细观察。(演示操作)
师:你有什么发现?这又说明了什么?
(引导学生说出:和2号杯子相比,3号杯中的水面升的更高,这说明墨水瓶比小玩具占的空间更大。)
师:从上面的实验可以看出,任何物体都占有一定的空间,而且占有的空间还有大有小,我们就把物体所占空间的大小叫做物体的体积。(板书:体积)
2、比较物体体积的大小
师:小玩具占的空间小,我们就说小玩具的体积小。墨水瓶占的空间大,我们就说墨水瓶的体积大。
问:你能像这样举例说出两个体积大小不同的物体吗?(指名生举例)
师:刚才大家举的例子都很好,下面请看屏幕上的这两组物体,谁的体积大呢?
(屏幕出示P26T1图指名学生说说自己是根据什么判断的)
3、体积单位
师:刚才通过数圆木和小木块的个数,我们比较出了两组物体体积的大小。老师这儿还有两个物体:其中一个由2个正方体组成,另一个是由27个正方体组成的。同学们猜猜谁的体积大?说说你的理由。(指名说、课件验证猜想)
问:为什么由2个正方体组成的长方体却比由27个正方体组成的物体还要大呢?
师:看来要想准确地表示出物体的大小,需要有一个统一的标准。这就产生了体积单位。(板书:体积单位)
问:你在生活中听说过哪些体积单位吗?(有选择的板书常用的三个体积单位:立方厘米、立方分米、立方米)
4、认识体积单位
师:我们首先来认识立方厘米,现在我手里拿的这个棱长为1厘米的小正方体的体积就是1立方厘米。有时为了书写简便,立方厘米也可以写成cm3。
师:请同学们从你的学具中找出体积是1立方厘米的小正方体,看一看、摸一摸、比一比,你有什么感觉?
师:现在请同学们闭上眼睛,想象一下1立方厘米的大小。
问:同学们我们的身边有哪些物体的体积接近1立方厘米?
师:请同学们估一估我手中这个优盘的体积大约是多少?
师:刚才我们认识了立方厘米,下面谁能给大家介绍一下1立方分米有多大?(指名说一说)
师:对!棱长为1分米的正方体的体积就是1立方分米。同样立方分米也可以写成dm3。请同学们拿出体积是1立方分米的正方体,和1立方厘米的小正方体相比,你有什么感觉?
问:在我们的身边又有哪些物体的体积接近1立方分米呢?
师:同学们想一想,计量哪些物体的体积时要用到立方分米这个单位?
师:认识了立方厘米、立方分米,大家想一想什么样的正方体的体积是1立方米?(指名说一说)同学们说的很对!棱长为1米的正方体的体积就是1立方米,用字母表示为m3。
师:1立方米占有的空间有多大呢?下面老师借助两个边长为一米的正方形框架给大家展示一下。(师展示讲解)由此可见,立方米是用来计量比较大的物体的体积单位。
问:生活中又有哪些物体的体积接近1立方米呢?
师:同学们再想一想,计量哪些物体的体积时要用到立方米这个单位?
三、课堂练习
屏幕出示
1、填上合适的单位名称
指名学生回答、师及时评价
2、你能说出下列物体的体积是多少吗?
指名答并说说自己的理由
师总结:计量一个物体的体积时,要看这个物体含有多少个这样的体积单位。
3、思考
把12个棱长为1厘米的小正方体摆成不同形状的长方体,摆成的长方体的体积各是多少?
四、课堂总结
通过这节课的学习,你有哪些新的收获?
体积单位的教学设计 第8篇
一、设计与理论依据
多年来,很多老师都反映《体积和体积单位》这一课比较难上好,体积对学生来说是一个新概念,由认识平面图形到认识立体图形,是学生空间观念的一次发展。学生对什么是物体的体积,怎样计量物体的体积,以及体积单位的大小等问题都不易理解。新课标指导出让学生“在熟悉的生活情景中,了解体积的意义,会用体积单位度量一些常见的物体。”我的理解是:要通过学生熟悉的实物,感知这些物体体积的大小。为此,将试图通过这节课的教学,突出数学与生活的联系,学习的内容符合学生的身心特点,从而激发学生的求知欲;
在多样性学习资源的开发与利用上,着意培养学生用数学的眼光观察生活,拓宽学生的视野。这不仅为学生了新的学习内容,也为教师
了新的教学资源,为教师的创造性教学了新的平台。现在恰逢龙岗区教研室举行教学基本功比赛,为了锻练自己和突破这类课题的瓶颈,我毅然决定用这一课参加比赛。
二、教学背景分析
由于这是一节比赛课,要充分了解赛场学生的实际情况比赛困难,所以本人只能根据现任教学生的实际情况进行设计。为此本人设计这一节课时采用了《乌鸦喝水》的故事导入新课,通过做实验、摸抽屉、举例子的方法让学生深刻体会什么是物体的体积,然后通过摸一摸、量一量、比一比、找一找、说一说的方法让学生真正领会体积单位的大小,再通过有趣的练习让学生
进一步熟练掌握体积单位的含义及其应用。
三、教学目标设计
1、教学内容:人教版P30-31体积和体积单位
2、教学目标:
1、通过观察实际,使学生感受什么是体积。
2、通过操作使学生牢固树立常用的体积单位:立方米、立方分米、立方厘米的概念。
3、能正确区分长度单位、面积单位、体积单位的不同。
3、教学重点:使学生感知物体的体积,初步建立1立方米、1立方分米、1立方厘米的体积观念。
4、教学难点:帮助学生经历体积是1立方米、1立方分米、1立方厘米的大小的表象的形成过程,能正确应用体积单位,估算常见物体的体积。
5、教具学具的准备:教具:1立方米、1立方分米、1立方厘米的模型,实验用的量杯两个,石头两块,大盒子两个,足球一个。每组学生准备1立方分米、1立方厘米各一个,常见的物体各2个,每人一个学具盒。
四、教学过程与教学资源设计
(一)体验体积的概念。
1、同学们大家还记得乌鸦喝水的故事吗?我们一起来回忆一下,会说的同学小声跟着说。
2、乌鸦真的能喝到水呢?我们做个实验来验证一下。(老师动手实验,把石子放入瓶中)。发现了什么?这说明了什么?
3、请同学们把双手放进空的课桌抽屉里摸一摸,感觉…….?将书包放入抽屉中,再用双手摸一摸,感觉……?
4、生活中像这样占有空间的物体还有哪些呢?
5、对了像这样的物体所占空的大小就叫做物体的体积。这就是我们这节课要认识的新朋友:体积和体积单位(用纸条出示课题)
6、你会判断空间的大小吗?你会判断体积的大小吗?(出示课件)
(二)探究常用的体积单位
出示两个长方体盒子,提问:这两个盒子的体积谁大?猜猜看。老师故意的往一个里面装大一点的方块,一个里面装大小不一的方块。学生说不行要一样大小的,要统一标准,对了,这就要请出裁判长:体积单位来帮忙了。(板书:体积单位)
要想学好体积单位我们先来回想一下体积单位的两个老朋友长度单位和面积单位。根据长度单位和面积单位你能猜出常用的体积单位有哪些吗?对了,这是1立方厘米、1立方分米、1立方米。
课件出示下列思考题:
选一个你最喜欢的体积单位朋友研究一下它的大小。(用摸一摸、量一量、比一比、找一找、说一说的方法)。
学生自学后分以下四个环节进行探究
1、我会发现:引导学生用以下的语言连起来说:我们组研究了(1立方厘米、1立方分米、1立方米),摸的感觉(很大、很小、中等),量的结果:棱长是1()的正方体,体积是1(),比后发现()。我们找到了生活中的()体积是1立方()。
2、我会辨认,让学生把老师准备好三张体积单位的纸条贴在黑板上,闭上眼睛想想1立方米、1立方分米、1立方厘米有多大。给学生准备好一些日常常见的物品,估计一下它的体积是多少。(先估计一些有数值的,再估算一些没有数值的。)
3、我会联系。让学生比较1分米、1平方分米、1立方分米,并懂得它们的联系。
4、我会用。(用智夺五星的游戏把以下练习串起来)
①请你做个裁判长。
(1)、一个1立方厘米的物体一定是正方体。()
(2)、一千克重的铁块和棉花的体积也一样大。()
(3)、小明口渴了一口气喝了2立方米的水。()
(4)、一张长方形的纸虽然很薄,但因为它有厚度,所以它也有体积。()
②、用多么大的体积单位表示下面物体的体积比较适当?
一块橡皮的体积约是8()
一台录音机的体积约20()
运货集装箱的体积约是40()
③填上适当的单位
B组:
1、一间教室所占的空间约是190()
3、一大捆铁丝长24()
2、一个鸡蛋约重是50()
A组:
1、数学课本长20()。
2、语文课本的占地面积约是300()
3、一个成年女性的体积约是()
④通过对上的一组图片、数据的欣赏和思考,进一步明确体积单位的大小,同时进行节约用水的教育。 ⑤用你手中的1立方厘米的小正体拼成你喜欢的形体,并说说它的体积是多少?
五、学习效果设计
用笑脸进行:你的收获是什么,你的困惑是什么?
体积单位的教学设计 第9篇
教学目标
1.通过观察实际,使学生知道什么是体积.
2.认识常用的体积单位:立方米、立方分米、立方厘米.
3.能正确区分长度单位、面积单位和体积单位的不同.
教学重点
使学生感知物体的体积,初步建立1立方米、1立方分米、1立方厘米的体积观念.
教学难点
帮助学生建立体积是1立方米、1立方分米、1立方厘米的大小表象,能正确应用体积单位估算常见物体的体积.
教学步骤
一、铺垫孕伏.
1.1米、1分米、1厘米,这是什么计量单位?
2.1平方米、1平方分米、1平方厘米,这是什么计量单位?
二、探究新知.
我们学习了长度和长度单位,面积和面积单位.今天我们要学习一个新概念:体积和体积单位.(板书课题:体积和体积单位)
(一)实验观察,建立体积概念.
1.教师演示实验:
第一步:出示有 杯水的玻璃杯,在水面处做一个红色记号.
第二步:在水杯中放入一块石头,在水面处做一个黄色记号.
第三步:拿出石块后,再放入一大些的石块,在水面处做绿色记号.
观察思考:在水杯中两次放入大小不同的石块,有什么现象发生?为什么会出现这个现象,说明什么?
汇报归纳:水杯中放入石块后,石块占据了空间,把水向上挤,水面向上升.
石块大占据空间大,水面上升得高;
石块小占据空间小,水面上升得低.
2.学生分组实验.
实验方法:
第一步:拿出装满细沙的杯子,把细沙倒在一边.
第二步:把一木块放入杯子里,再把倒出的沙装回杯子里.
第三步:把杯中细沙倒出,把一大些的木块放入杯子里,再把倒出的沙装回杯子里.
观察思考:出现了什么结果?这说明了什么?
汇报归纳:放入大木块,外边剩的沙多;
放人小木块外边剩的沙少.
这说明木块也占据了杯子的空间.木块大占据空间大,木块小占据空间小.
3.总结两次实验结果.
教师提问:以上的两个实验说明了什么?
学生归纳:物体都占据空间,物体大占据空间大,物体小占据空间小.
教师明确:把物体所占空间的大小叫做物体的体积.(板书)
4.比较物体体积的大小.
实物比较:字典和大词典 桌子和椅子 水桶和茶叶桶 课本和练习本
(教师出示一组体积接近的物体)提问:这两个物体谁的体积大?
(二)认识体积单位.
教师指出:在实际生活和生产中,有时只凭感觉是无法判断出谁大谁小的,这就要我们
精确地计量物体的体积.计量体积就要用体积单位,常用的体积单位有立
方厘米、立方分米、立方米(板书)
1.认识1立方厘米(出示一块1立方厘米的体积模型)
这就是体积为1立方厘米的正方体.
分组观察,然后汇报:你知道了什么?
看一看:1立方厘米的体积比较小,是正方体.
量一量:1立方厘米的正方体的棱长是1厘米.
说一说:棱长1厘米的正方体体积是1立方厘米(板书)
想一想:体积是1立方厘米的物体比较小.
议一议:哪些物体计量体积时使用立方厘米比较恰当?
2.认识1立方分米.(出示一块1立方分米的体积模型)
这就是体积为1立方分米的正方体.
分组观察,然后汇报:你知道了什么?
看一看:1立方分米的体积大一些,是一个正方体.
量一量:1立方分米的正方体的棱长是1分米.
说一说:棱长1分米的正方体,体积是1立方分米.(板书)
想一想:体积是1立方分米的物体比1立方厘米的物体大.
议一议:哪些物体计量体积时使用立方分米比较恰当?
3.认识1立方米.
思考:什么样的物体的体积是1立方米?
(板书:棱长1米的正方体,体积是1立方米)
议一议:哪些物体计量体积时使用立方米比较恰当?
4.比较:这三个体积单位的共同点是什么?不同点是什么?
长度单位、面积单位和体积单位又有什么不同点呢?
长度单位:线段
面积单位:正方形
体积单位:正方体
(三)计量物体的体积.
怎样用这些体积单位计量物体的体积呢?
计量物体的体积就是一个物体里含有多少个体积单位,它的体积就是多少
(四)反馈练习.
1.看图说出物体的体积.
2.用12个1立方厘米的正方体木块摆成不同形状的长方体.它们的体积各是多少?
(都是12立方厘米.不论物体是什么形状,含有几个体积单位,它的体积就是多少)
三、全课小结.
这节课你学了哪些知识?
四、随堂练习.
1.填空.
一块橡皮的体积约是8( )
一台录音机的体积约是20( )
运货集装箱的体积约是40( )
2.连线:学校主席台的体积 24立方厘米
书包的体积 24立方米
碳素墨水盒的体积 24立方分米
3.说说身边的物体的体积大约是多少?
五、课后作业.
下面的图形都是用棱长1厘米的小正方体拼成的,说出它们的体积各是多少立方厘米?
六、板书设计.
体积和体积单位
物体所占空间的大小叫做物体的体积.
体积单位的教学设计 第10篇
教学目标:
1、通过实践操作,使学生理解体积的含义,建立体积的概念。
2、初步认识常用的体积单位:立方米、立方分米、立方厘米,掌握常用的体积单位和体积单位的量的特征,能正确选择和使用体积的单位。
3、通过学生的动手实践,加强学生的空间观念。
教学重点:形成体积的概念和掌握常用的体积单位。
教学过程:
一、依据预习提纲,自主学习。
1.什么是体积?
2.请每位同学拿出4个1立方厘米的立方体,把它们拼在一起,摆成一排.拼成了一个什么形体?(长方体)这个长方体的体积是多少?(4立方厘米)
3.常用的体积单位有哪些?你能想像或比划一下他们个个有多大吗?
4.长方体的体积公式是什么?
5.正方体的体积公式是什么?
6.光明纸盒厂生产一种正方体纸板箱,棱长是5分米,体积是多少立方分米?
7.讨论长方体和正方体的体积计算方法是否相同.
二、探索研究,交流展示。
1.故事引入:出示主题图:乌鸦喝水的故事。
自由汇报:乌鸦是怎样喝到水的?为什么?
2.学生实验:
取两个同样大小的玻璃杯,先往一个杯子里倒满水,取一块鹅卵石放入另一个杯子里,再把第一个杯子里的水倒到第二个杯子里,会出现什么情况?为什么?(第一杯的水不能倒入第二杯,因为鹅卵石占据了一部分空间。)
3.课件出示:比较观察:电视机、影碟机、手机,哪个所占的空间大?
不同的物体所占空间的大小不同。
4.体积概念的引入:物体所占空间的大小叫做物体的体积。(板书课题:体积)
加深理解:
三、体积单位的认识:(学生先看书自学,再汇报交流。)
1.我们已经学过哪些长度单位和面积单位?
2.出示两个长方体:怎样比较这两个长方体体积的大小呢?
3.根据常用的长度单位和面积单位,想一想常用的体积单位有哪些?
介绍体积单位,常用的体积单位有:立方米(m)、立方厘米(cm)。
4.认识:1立方米、1立方分米、1 立方厘米的体积各有多大。
我们规定:棱长是1厘米的正方体的体积是1立方厘米。
1立方厘米:
①让学生拿出1立方厘米的小正方体并量出它的棱长。
②看看我们身边的什么的体积大约1立方厘米。(约一个手指尖的大小)
1立方分米:出示一个棱长1分米的正方体,你知道它的体积是多少吗?我们生活中的哪些物体的体积大约1立方分米。(约一个粉笔盒的大小)
1立方米:出示1立方米的木条棱架,让同学们上来看一下1立方米的体积的大小。
我们生活中,哪些物体的体积大约1立方米?
5.练习:
(1)完成P40“做一做”T1。
说一说分别是用来计量什么的单位,它们有什么不同?
长度单位、面积单位、体积单位的联系与区别。
(2)完成P40“做一做”T2。
让学生说一说解题的根据是什么?进而使学生深化对计量一个物体的体积,要看这个物体含有多少个体积单位的意思的理解。
四、反馈检测
1.一块砖的长是24厘米,宽是12厘米,厚是6厘米.它的体积是多少平方厘米?
2.一块正方体的石料,棱长是7分米,这块石料的体积是多少立方分米?如果1立方分米石料重2.7千克,这块石料重多少千克?
教学设计:
体积和体积单位
常用的体积单位有:立方米(m)、立方分米(dm)、立方厘米(cm)。
棱长是1厘米的正方体的体积是1立方厘米。
课后反思:整节课中,我给予学生一个又一个实验研究平台,引导学生在“猜想-实验验证-发现规律”中开展学习,在一次次猜想验证中,发现规律,掌握知识,培养了能力。
体积单位的教学设计 第11篇
[教学内容]
六年级上册第25页例
9、 “试一试”“练一练”,练习六第2题。
[教学目标]
1.在具体的情境中自主探索并掌握长方体体积公式,能应用公式正确计算长方体体积,并解决一些简单的实际问题。
2.通过操作、观察、猜想和归纳等数学活动,经历体积公式的探索过程,不断积累立体图形的.学习经验,增强空间观念,发展数学思维。
3.进一步体会数学与实际生活的联系,获得学习成功体验,激发数学学习兴趣。
[教学准备]
教师准备用1cm3小正方体拼摆成的长方体模型,长方体包装盒,多媒体课件;各小组准备1cm3的正方体和实验记录单。
[教学过程]
一、创设情境,导入新课
谈话:上节课,我们已经认识了体积和体积单位。今天,老师带来了一个用1cm3的小正方体摆成的长方体(出示长4cm、宽3cm、高2cm的长方体模型),你有办法知道这个长方体的体积是多少立方厘米吗?
明确:要知道一个物体的体积,就要看这个物体中包含多少个体积单位。
演示:按长方体模型的长、宽、高各含有的小正方体个数,算出长方体的体积)
揭题:刚才,老师的这个长方体模型是用1立方厘米的小正方体摆成的,但生活中有很多长方体或正方体的物体是不能分割的。譬如,这个长方体的包装盒(出示),它的体积又有什么办法知道呢?这节课,我们一起来研究长方体和正方体体积的计算方法。(板书课题)
[设计意图:通过数一个长方体中含有的1cm3小正方体的个数,使学生进一步理解求一个物体的体积,就是求这个物体包含的体积单位的个数。同时也为后面有序地数出小正方体的个数作一些孕伏。]
二、操作探究,发现规律
启发:在三年级,我们学过长方形面积,还记得是怎样推导长方形面积公式的吗?
学生回忆后,电脑演示推导长方形面积公式的过程。
出示长方体直观图,讨论:你认为,长方体的体积可能与它的什么有关?我们可以用怎样的方法研究长方体的体积?
学生可能想到长方体的体积与它的长、宽、高有关;可以把长方体分割成若干个棱长1厘米、1分米或1米的正方体,长方体中含有体积单位的个数就是它的体积。
谈话:同学们的想法有没有道理呢?我们来看大屏幕,(多媒体演示)我们来想象一下:如果一个长方体的长增加或缩短,它的体积会怎样?如果改变它的宽或者高,体积会发生怎样的变化?
谈话:看来,同学们的猜想确实有道理。要研究长方体的体积与它的长、宽、高到底有什么关系,我们需要一些长方体作为研究对象。下面,我们一起来摆出一些长方体。
明确活动要求:
(1)同桌合作,用若干个1cm3的正方体任意摆出4个不同的长方体并编上序号。
(2)观察摆出的长方体的长、宽、高,所用小正方体的个数,以及它们的体积各是多少,完成记录表。
(3)填完表格后,同桌核对数据,并交流自己的发现。
学生按要求操作、交流,教师巡视。
组织反馈。(指名汇报收集到的数据,并以其中的一个长方体为例,说说怎样看出它的长、宽、高的厘米数的。正方体的个数又是怎样数的,摆出的长方体的体积是多少,根据表中数据,自己有什么发现。)
板书:长方体的体积=长×宽×高。
启发:同学们通过用1cm3的小正方体摆长方体的活动,发现了长方体体积等于它长、宽、高的乘积。是不是所有的长方体的体积都是它长、宽、高的乘积呢?这就需要我们进一步验证。
[设计意图:引导学生由探索长方形面积的经验,通过类比把探索平面图形面积的方法迁移到立体图形中来,既有利于培养学生初步的推理能力,也是具体的学习方法的指导;用1cm3的小正方体摆长方体的操作,旨在引导学生通过操作和交流,初步发现长方体体积与它的长、宽、高的关系,并在这一过程中,培养动手操作能力,发展数学思考,感悟归纳的思想方法。]
三、再次探索,验证规律
出示4×1×1的长方体图,谈话:这是一个长4cm、宽1cm、高1cm的长方体,你知道它的体积是多少吗?
学生可能想到用4个1cm3的小正方体摆成一排正好可以得到这个长方体,它的体积是4cm3;也可能用“4×1×1”算出它的体积。
根据学生的回答在长方体上画出相应的分割线,确认这个长方体的体积是4cm3。(见图1)
出示4×3×1的长方体图,谈话:这个长方体的长、宽、高分别是几cm?如果不用1cm3的小正方体,你能想象出这个长方体中含有多少个1cm3的小正方体吗?自己先在长方体上画一画,再和同学交流。
提问:这个长方体的体积是多少?你是怎样想的?(根据学生的回答出示图2)
明确:在这个长方体中,沿着长一排可以摆4个1cm3的小正方体,沿着宽可以摆3排,所以,这个长方体的体积可以用“4×3×1”来计算。
出示4×3×2的长方体图,谈话:我们再来看这个长方体,它的长、宽、高分别是几cm?你能想象出这个长方体中含有多少个1cm3的小正方体吗?自己先试一试。
反馈:这个长方体的体积是多少cm3?你是怎样想的?(学生的回答后,出示图3)
提问:如果用的小正方体来摆第3个长方体,沿着长一排可以摆几个?沿着宽可以摆几排?沿着高可以摆几层?它的体积可以怎样计算?
再问:如果有一个长方体,长5cm,宽4cm,高3cm,摆出这个长方体一共要用多少个1cm3的正方体?它的体积是多少cm3?
引导学生用示意图表示出思考过程。
[设计意图:对三个长方体的探究,引导学生经历了“想象—画图—说理”的过程,使学生随着排数、层数的递增,清晰地体会到长方体的体积与它的长、宽、高的关系。第4个长方体只给出了长、宽、高的数据,意在促使让学生依托已经获得的直观经验,将摆的过程内化为有序地算(数)的过程。至止,长方体体积计算方法已呼之欲出。]
四、引导概括,得出公式
提问:通过刚才的活动,你认为长方体的体积与它的长、宽、高有什么关系?我们前面提出的猜想正确吗?
揭示长方体的体积公式,指出:以后我们可以直接用公式计算长方体的体积。
讲解:如果用V表示长方体的体积,a、b、h分别表示长方体的长、宽、高,你能用字母表示出长方体的体积公式吗?
板书:V=abh。
和同桌说一说你还知道了什么?
让学生口算各题的得数,并交流计算时的思考过程。
五、巩固练习,应用拓展
1.完成“试一试”。
出示长方体的包装盒,谈话:刚开始上课,我们还不能求这个包装盒的体积是多少,现在你能解决了吗?要求这个长方体包装盒的体积,需要知道哪些条件?有办法知道这些数据吗?
指导测量、记录数据后独立解答。
出示正方体的包装盒,这是一个棱长12cm的正方体纸盒,它的体积是多少cm3?
学生独立完成后,组织反馈。
2.完成第26页“练一练”第1题。
先让学生看图说一说每个长方体或正方体的长、宽、高(或棱长)各是多少cm,再口算出它们的体积,并数一数每个立体图形是由多少个1cm3的小正方体摆成的。
3.完成练习六第2题。
出示题目,让学生自由读题。
提问:计算冷藏车的容积,为什么要从里面量?
学生独立完成计算,并组织反馈。
六、全课小结,梳理学法
提问:今天,我们一起学习了什么?通过这节课的学习,你有哪些收获?回顾这堂课的学习过程,我们是怎样探索出长方体的体积公式的?
七、课堂作业
练习六第1题。
体积单位的教学设计 第12篇
设计说明
体积单位间的进率是在学生已经学习了长度单位、面积单位,以及掌握了长方体和正方体体积的计算方法的基础上进行教学的,因此本设计力求突出以下两点:
1.复习铺垫,引入新知。
在复习已学知识的基础上学习新知,是数学教学常用的方式,它能有效地促进知识间的融合,形成系统的知识体系。本设计通过复习长度单位米、分米和厘米及相邻单位间的进率关系,面积单位平方米、平方分米和平方厘米及相邻单位间的进率关系,建立相邻体积单位间的进率关系,为今后的学习奠定基础。
2.关注知识的形成过程。
本设计不仅要让学生掌握新知,更重要的是引导学生掌握获取新知的方法和途径。教学时,首先利用课件出示两个正方体,一个棱长为1分米,一个棱长为10厘米,让学生分别算一算它们的体积,由此发现:1立方分米=1000立方厘米。接着让学生根据前面探索中得到的经验,进行自主探索,得出1立方米=1000立方分米。最后通过应用相邻体积单位间的进率进行不同体积单位的换算,让学生主动参与学习过程,通过计算、自主探索、合作交流等活动掌握数学知识。
课前准备
教师准备 PPT课件
教学过程
⊙复习导入
1.常用的长度单位有哪些?相邻两个常用长度单位间的进率是多少?
(米、分米、厘米、毫米,相邻两个常用长度单位之间的进率是10)
(板书:长度单位:米、分米、厘米、毫米;
进率:10)
2.常用的面积单位有哪些?相邻两个常用面积单位间的进率是多少?
(平方米、平方分米、平方厘米,相邻两个常用面积单位之间的进率是100)
(板书:面积单位:平方米、平方分米、平方厘米;
进率:100)
3.说出两个不同单位的名数之间是怎样换算的?并完成下面的填空。
(由高级单位转化成低级单位,乘进率;
由低级单位转化成高级单位,除以进率)
4米=( )厘米 24分米=( )米
2.05平方分米=( )平方厘米
30.2平方分米=( )平方米
4.我们已经学习了体积单位,你知道的体积单位有哪些吗?
(立方米、立方分米、立方厘米)
(板书:体积单位:立方米、立方分米、立方厘米)
师:它们之间的进率又是多少呢?今天,我们就来学习体积单位之间的进率。(板书课题)
设计意图:从学生已有的知识经验开始教学,便于引导学生理解新旧知识之间的联系,提高学生学习的兴趣。
⊙探究新知
1.教学体积单位之间的进率。
(1)比一比。
出示一个棱长为1 dm的正方体和一个棱长为10 cm的正方体。想一想,它们的体积相等吗?为什么?
学生小组内讨论交流后全班汇报。
(2)算一算。
计算两个正方体的体积分别是多少。
(棱长为1 dm的正方体的体积是1 dm3,棱长为10 cm的正方体的体积是1000 cm3)
提问:根据它们的体积相等,可以得出怎样的.结论?(1 dm3=1000 cm3)
(3)议一议:为什么1 dm3等于1000 cm3?
生1:我是把棱长1 dm看作10 cm,再求体积,即10×10×10=1000(cm3),所以它们的体积相等。
生2:我是把棱长为1 dm的正方体的体积看作由1000个棱长为1 cm的小正方体组成的,这样就得到10×10×10=1000(cm3),所以它们的体积相等。
生3:我是把棱长10 cm看作1 dm,再求体积,即1×1×1=1(dm3),所以它们的体积相等。
体积单位的教学设计 第13篇
教材分析:
这部分内容教学相邻体积单位间的进率,让学生根据进率进行相邻体积单位的换算。例11让学生通过计算,探索发现相邻两个体积单位间的进率。教材首先出示了两个同样大小的正方体,一个棱长标注为1分米,另一个棱长标注为10厘米。先让学生依据图中给出的数据判断它们的体积是否相等,再让学生分别算一算它们的体积。由此发现:1立方分米=1000立方厘米。对于另一组相邻体积单位立方米和立方分米的进率,教材则放手让学生根据前面探索中得到的经验自主进行推算。“练一练”让学生初步尝试应用相邻体积单位间的进率进行不同体积单位的换算。
教学目标:
1.使学生经历1立方分米=1000立方厘米、1立方米=1000立方分米的推导过程,明白相邻的两个体积单位之间的进率是1000的道理.
2.会应用对比的方法,记忆并区分长度单位、面积单位和体积单位,掌握它们相邻两个单位间的进率.
3.会正确应用体积单位间的进率进行名数的变换,并解决一些简单的实际问题.
教学准备:
棱长为1分米的正方体以及棱长为10厘米的正方体挂图。
教学过程:
一、复习导入
1、教师提问:
(1)常用的长度单位有哪些?相邻的两个长度单位间的进率是多少?板书:米分米厘米
(2)常用的面积单位有哪些?相邻的两个面积单位间的进率是多少?板书:平方米平方分米平方厘米
(3)我们认识的体积单位有哪些?
板书:立方米立方分米立方厘米
提问:你能猜出相邻两个体积单位间的`进率是多少呢?引出课题:相邻体积单位间的进率
【评析:从学生已有的知识经验出发展开教学,朴实、自然,有利于学生认知结构的形成。】
二、自主探索验证猜测
1、教学例11。
(1)挂图出示一个棱长1分米的正方体和一个棱长10厘米的正方体。
(2)提问:这两个正方体的体积是否相等?你是怎样想的?
(引导学生根据两个正方体棱长的关系作出判断,即:1分米=10厘米,两个正方体的棱长相等,体积就相等。)
(3)用图中给出的数据分别计算它们的体积。
学生分别算一算,然后在班内交流:
棱长是1分米的正方体体积是1立方分米;
(板书:1立方分米)
棱长是10厘米的正方体体积是1000立方厘米。(板书:1000立方厘米)
(4)根据它们的体积相等,可以得出怎样的结论?
1立方分米=1000立方厘米(板书:=)
(5)谁来说一说,为什么1立方分米=1000立方厘米?
2、提问:用同样的方法,你能推算出1立方米等于多少立方分米吗?
学生在小组里讨论。(板书:立方米=1000立方分米)
班内交流。如果有学生直接说出1立方米=1000立方分米,要让学生说说是怎样得这个结论的?
引导学生把棱长1米的正方体和棱长10分米的正方体进行比较,并通过计算得出:1立方米=1000立方分米。
3、小结:从1立方分米=1000立方厘米,1立方米=1000立方分米来看,每相邻两个体积单位间的进率是多少?
【评析:学生通过计算,自主探索得出1立方分米=1000立方厘米;
同时,及时引导学生回顾得出这一结论的方法与过程,用类比、迁移的方法,放手让学生根据探索中得到的经验自主进行推算立方米与立方分米的进率,不仅掌握了数学知识,而且潜移默化地受到了数学思想方法的熏陶。】
三、巩固深化
1、出示书第30页的“练一练”。
学生先独立完成。
交流你是怎样想的。
小结:相邻体积单位间的进率是1000,把高级单位的数改写成低级单位的数要乘进率1000,所以要把小数点向右移动三位;
把体积低级单位的数改写成高级单位的数,要除以进率1000,所以要把小数点向左移动三位。
【评析:突出学生的独立思考和概括能力的培养.体积单位名数的改写虽然是新知,但是学生已有面积单位名数的改写作基础,独立解答这类新知并不困难,因此这一层的教学放手让学生独立思考,在尝试了几题的基础上概括出解题的一般方法。】
2、出示练习七第1题。
学生独立完成表格。
班内交流:说说长度、面积和体积单位有什么联系?
而它们的进率是不同的,你能说说它们每相邻两个单位间的进率分别说多少呢?
3、出示练习七的第2题。
学生先独立完成。
交流:你是怎样想的。
指出:面积单位换算与体积单位换算的区别,它们相邻单位间的进率不同。
4、出示练习七的第3题。
学生独立完成。
交流:结合前两题说说怎样把高级单位的数量换算成低级单位的数量,再结合后两题说说怎样把低级单位的数量换算成高级单位的数量。
5、出示练习七的第4题。
学生独立完成后集体交流。
【评析:巩固练习是课堂教学的重要环节,是新知识的补充和延伸,是形成知识结构和发展能力的重要过程。教师通过列表、单位换算、对比练习等,使学生进一步掌握体积单位间的进率,进一步掌握体积单位的换算方法,同时沟通长度单位、面积单位和体积单位的联系和区别,加深对这些单位意义的理解。】
四、课堂总结。
通过这节课的学习,你有什么收获?
【总评:“自主探索,合作交流是学生学习数学的重要方式”。这堂课,教师正确处理了“扶”与“放”的尺度,设计了让学生主动参与的学习过程,让学生通过计算、自主探索、合作交流等活动,掌握了数学知识,提高了数学能力。】
体积单位的教学设计 第14篇
教学目标:掌握常用的体积单位之间的进率和名数的改写。
教学重点:体积单位之间的进率。
教学用具:棱长是1分米的正方体模型。
教学过程
一、创设情境
填空:①长方体体积=;
②常用的体积单位有
③正方体体积=。
师:你知道每相邻的两个体积单位之间的进率是多少吗?今天我们就学习体积单位间的进率。(板书课题)
二、探索研究
1.小组学习,体积单位间的进率。
(1)出示:1个棱长是1分米的正方体模型教具。
提问:①当正方体的棱长是1分米时,它的体积是多少?
②当正方体的棱长是10厘米时,它的体积是多少?
③而1分米是多少厘米?1立方分米等于多少立方厘米?
小组合作填表:
正方体棱长1分米=10厘米
体积1立方分米=1000立方厘米
小组汇报结论:1立方分米=1000立方厘米
同理得出:1立方米=1000立方分米
用填空的形式小结:
从上面可以看出,相邻两个体积单位之间的进率都是。
(2).将长度单位、面积单位、体积单位加以比较(投影显示第38页的表)
先让学生填后并比较这三类单位相邻两个单位间的进率有什么不同?为什么?
(3)学习体积单位名数的改写。
先思考:
(1)怎样把高一级的体积单位的名数改写成低一级的体积单位的名数?
(2)怎样把低一级的体积单位的名数改写成高一级的体积单位的名数?
出示例3,并写成如下形式:
8立方米=(:)立方分米:
0.54立方米=(:)立方分米
出示例4,并写成如下形式:
3400立方厘米=(:
)立方分米:
96立方厘米=(:)立方分米
学生独立思考,再小组讨论自己是怎样想和做的。
出示例5。(投影显示)
放手让学生独立审题并解答,再针对出现的问题重点讲解。
解法一:
2.2×1.5×0.01=0.033(立方米)
0.033立方米=33立方分米
解法二:
2.2米=22分米:1.5米=15分米:0.01米=0.1分米
22×15×0.1=33(立方分米)
三、课堂实践
将练习八的第1、2题填在书上,老师进行个别辅导后订正。
四、课堂评价。今天学习的内容你学会了吗?
五、课后作业
练习八的3、4、5题。
可以先复习一下平方之间的进率
体积单位的教学设计 第15篇
教学内容:苏教版义务教育教科书第19页例12、“练一练”、练习四第9~14题。
教学目标:
1.使学生经历1立方分米=1000立方厘米、1立方米=1000立方分米的推导过程,明白相邻的两个体积单位之间的进率是1000的道理。
2.会应用对比的方法,记忆并区分长度单位、面积单位和体积单位,掌握它们相邻两个单位间的进率。
3.会正确应用体积单位间的进率进行名数的变换,并解决一些简单的实际问题。
教学重点与难点:
根据进率进行相邻体积单位的换算。
教具:课件棱长是1分米的正方体纸盒
教学过程:
一、复习导入
提问:“1平方分米等于多少平方厘米?想想是怎么推导出来的?请画在边长是1分米的正方形纸上.”
学生6人一组,回忆并再次经历1平方分米=100平方厘米的推导过程.
(2)展示学生的推导过程,可请1~2名学生代表他们的小组上台述说,并将1平方分米=100平方厘米的示意图──将边长1分米的正方体纸盒画上100个边长是1厘米的小正方形展示出来.
二、探究新知
1、推导1立方分米=1000立方厘米
(1)猜猜看,1立方分米等于多少立方厘米呢?
你们能应用类似的方法推导出来吗?
要求每个小组将推出来的结果用1立方分米的正方体纸盒表示出来.
学生6人一组,进行探索、推导.教师巡视各组情况并进行指导:让每个学生在1平方分米的纸上画出100个小格,然后贴在棱长1分米的正方体盒块的6个面上.这样,就得到一个1立方分米=1000立方厘米的数学模型。
(2)展示推导过程
请1~2名学生上台述说他们的推导过程:正方体棱长1分米,也就是10厘米,体积就是(10×10×10)立方厘米.并将他们做好的模型进行展示。
(2)展示推导过程
请1~2名学生上台述说他们的推导过程:正方体棱长1分米,也就是10厘米,体积就是(10×10×10)立方厘米.并将他们做好的模型进行展示.
(3)全班归纳总结:教师用课件动态展示将一个棱长1分米的正方体分割成1000个棱长1立方厘米的过程,并在示意图下醒目地写上:1立方分米=1000立方厘米。(或写在黑板上)
3.推导1立方米=1000立方分米
(1)提问:“不用操作,你能想出1立方米等于多少立方分米吗?”
(2)学生独立思考.可提示:在脑子里想一个棱长是1米的正方体。再将这个正方体分割成棱长是1分米的小正方体,想想可分割多少个?
(3)学生先在小组交流自己的想法,然后在全班交流,师生共同归纳出:1立方米=1000立方分米
教师用课件显示出来(或写在黑板上)。
4.总结相邻两个体积单位间的进率。
(1)提问:你学过哪些体积单位?请按从高到低的顺序把它排列出来,然后说出每个体积单位的相邻单位。
(2)引导学生观察:1立方分米=1000立方厘米
1立方米=1000立方分米
并想一想:相邻两个体积单位之间的进率是多少?想好后在书上填空。
5.构建长度、面积和体积单位的计量系统.
(1)让学生说一说,到目前为止,所学的长度、面积和体积单位各有哪些,它们分别是计量物体的什么的?
(长度单位是用来计量物体长度的;
面积单位是用来计量物体表面大小的;
体积单位是用来计量物体所占空间大小的.)
(2)提问:“长度、面积和体积单位,它们相邻两个单位间的进率相同吗?”学生回答后将书上第31页上的表格填完整,集体订正。
三、练习应用
1、完成练一练
引导学生认真审题,独立解答。
集体交流,指名说说换算思路。
2、完成练习四第9题。
学生独立完成表格。
长度单位、面积单位、体积单位有什么联系和区别?这三类单位的进率各有什么特点?
3、完成练习四第10题
学生独立完成,集体订正
引导学生说说面积单位换算与体积单位换算的区别。交流
引导学生归纳将高级单位的名数改写成相邻的低级单位的名数的`一般方法(师板书):
高级单位的名数×1000=相邻的低级单位的名数
4、完成练习四第11、12题。
四、全课总结
引导学生回忆本节课所学主要内容。回忆时可按本节课所学知识的顺序来叙述。
本节课学习了体积单位之间的进率,知道1立方米=1000立方分米,1立方分米=1000立方厘米;
会应用体积之间的进率进行体积单位名数的改写。
五、作业
练习四第13、14题
体积单位的教学设计 第16篇
教学要求
通过实验观察,使学生理解体积的含义,认识常用的体积单位:立方米、立方分米、立方厘米,同时发展学生的空间观念和培养学生的推理能力。
教师准备:
盛有红色水的大玻璃杯一个,用绳捆着的大小石头各一块,沙一堆;
投影仪和1立方米的木条棱架一个;
体积是1立方分米、1立方厘米的正方体各一个。
学生准备:12个1立方厘米的正方体学具。
教学重点
体积的含义和常用的体积单位。
教学过程
一、揭示课题
我们已经学习了长方体和正方体,掌握了长方体和正方体的表面积计算方法,这节课我们将继续学习和研究长方体和正方体的一些知识。
二、探索研究
1.实验观察
观察(1):把一块石头放入有红色水的玻璃杯中,水位有什么变化?这是为什么?
观察(2):这只杯子里装满了细沙,现在把细沙倒出来放在一边,取一块木块放入杯子里,再把刚才倒出来的沙装回到杯子里,你发现了什么情况?为什么?
观察(3):在(1)中把石块换成小一点的,你观察到什么?为什么?
图片观察:投影出示课本上的火柴盒、工具箱、水泥板,哪一个物体所占的空间大?
结论:物体所占空间的大小叫做物体的体积。(板书课题:体积)
加深理解:
(1)你知道什么是长方体和正方体的体积?
(2)你能说出身边的哪些物体的体积较大?哪些物体的体积较小?
(3)做第30页的做一做。
2.教学体积单位。
(1)介绍体积单位。
常用的体积单位有:立方米、立方分米、立方厘米。
(2)1立方米、1立方分数、1立方厘米的体积各有多大。
1立方厘米:
①让学生拿出1立方厘米的小正方体并量出它的棱长。
②看看我们身边的什么的体积大约1立方厘米。
1立方分米:出示一个棱长1分米的正方体,你知道它的体积是多少吗?我们生活中的哪些物体的体积大约1立方分米。
1立方米:出示1立方米的木条棱架,让同学们上来看一下1立方米的体积的大小。我们生活中,哪些物体的体积大约1立方米?
(3)建立表象,感知大小
投影显示第36页的第2题,让学生口答。
3.长度单位、面积单位、体积单位的联系与区别。
投影显示做一做的第一题,让学生说。
三、课堂实践
1、做练习七的第1题,让学生拿出准备好的12个小正方体先摆后说。
2、做练习七的第3题,学生独立做后集体订正。
四、课堂小结
学生小结今天学习的内容。
体积单位的教学设计 第17篇
教学目标:
1、使学生理解体积的意义,认识常用的体积单位:立方米、立方分米、立方厘米,培养初步的空间观念。
2、使学生知道计量一个物体的体积有多大,要看它包含多少个体积单位。
教学重点:
1、建立体积概念。
2、认识体积单位。
教学难点:
建立体积概念。
教法:谈话法、实验法
学法:观察法、自主探索法
课前准备:
课件
教学过程:
一、定向导学:(2分)
1、导入:课件出示:乌鸦喝水图片,问:乌鸦为什么能喝到水?(石头占了一定的空间)。
物体所占空间的大小,叫做物体的体积。板书课题:体积和体积单位。
2、出示目标:
(1)使学生理解体积的意义,认识常用的体积单位:立方米、立方分米、立方厘米,培养初步的空间观念。
(2)使学生知道计量一个物体的体积有多大,要看它包含多少个体积单位。
二、自主学习(5分)
自学内容:认真看课本27页至28页,边看边画出重点。
自学思考:
1、乌鸦是怎么喝到水的?为什么?
2、什么叫做体积?
3、常用的体积单位有哪些?
4、1立方厘米、1立方分米、1立方米有多大?
三、合作交流:(8分)
1、生活中接近1立方厘米的物体是(),生活中接近1立方分米的物体是(),生活中接近1立方米的物体是()。
2、选择恰当的单位:
橡皮的体积用(),火车的体积用(),书包的体积用()。
四、质疑探究(5分)
1、长度单位、面积单位、体积单位都是度量什么的?
2、练习:
①说一说:测量篮球场的大小用()单位。
测量学校旗杆的高度用()单位
测量一只木箱的体积要用()单位。
五、小结检测(10分)
(一)小结:通过今天的学习,你有什么收获?
(二)检测:
1、判断:一只长方体纸箱,表面积是52平方分米,体积是24立方分米,它的表面积大。()
2、选择决定体积大小,是看它含有体积单位的个数。
a、演示:用棱长1厘米的4个正方体,拼一个长方体,说出它的体积是多少?
b、说出下面物体的体积(3个体积单位,4个体积单位,)
c、摆一摆:请你也摆出一个体积是3立方厘米的物体。摆出体积是4立方厘米的物体。
同一个体积数,可以摆出不同的形状。
②动手摆一摆:
请大家用手中的小正方体拼一个体积是8立方厘米的长方体(或正方体)。(想一想你拼的物体体积是多少?)可以怎么摆?
六、堂清(10分)
1、填空:()叫做体积。
2、填合适的单位:
一块橡皮擦的面积有6()
教室的门面积约是2()
操场的面积约是8000()
操场一周是400()
一个书包的体积大约是16.5();
一本数学书的体积大约是300();
常用的体积单位有:()()()。
板书:
长方体和正方体体积
物体所占空间的大小叫做物体的体积。
常用的体积单位有立方米、立方分米、立方厘米
体积单位的教学设计 第18篇
教学目标
1、了解并掌握体积单位间的进率。
2、理解并掌握体积高级单位与低级单位间的化和聚。
3、培养学生认真审题的习惯,使学生在解决实际问题时,能准确地运用单位间的化聚法进行计算。
教学重点
体积单位进率和单位之间的互化。
教学难点
复名数和单名数之间的转化。
教学过程
一、复习准备。
1、教师提问:
(1)常用的长度单位有哪些?相邻的两个单位间的进率是多少?
板书:长度单位
1米=10分米
1分米=10厘米
厘米
(2)常用的面积单位有哪些?相邻的两个单位间的进率是多少?
板书:面积单位
1平方米=100平方分米
1平方分米=100平方厘米
平方厘米
2、口答填空,并说明算法和算理。
(1)4米=( )分米=( )厘米
算法:进率×高级单位的数
(2)500厘米=( )分米=( )米
算法:低级单位的数÷进率
3、谈话引入:我们复习了长度单位和面积单位的进率,和高级单位和低级单位之间转换的方法,今天我们学习常用的体积单位间的进率和单位之间的转化。(板书课题:体积单位间的进率)
二、学习新课。
(一)认识体积单位间的进率
1、认识立方分米和立方厘米的关系。
(1)指导学生自学。出示自学提纲:
A、棱长是1分米的正方体的体积是多少?
B、棱长是10厘米的正方体的体积是多少?
C、1立方分米与1000立方厘米哪个大?为什么?
(2)学生分组汇报。教师演示动画“体积单位间的进率1”
因为1分米=10厘米,所以棱长是1分米的正方体也可看作棱长是10厘米的正方体。
1分米×1分米×1分米=1(立方分米)
10厘米×10厘米×10厘米=1000(立方厘米)
(3)板书:1立方分米=1000立方厘米
2、推导立方米与立方分米的关系。
(1)教师提问:请同学们猜想一下立方米与立方分米之间有什么关系?
用什么方法可以验证你的想法是否正确呢?
(学生分组讨论,汇报)
(2)(演示动画“体积单位间的进率2”)
棱长是1米的正方体的体积是1立方米。而1米=10分米,所以棱长是1米的正方体可以划分成1000个棱长是1分米的小正方体,即1000个体积为1立方分米的正方体。
板书:1立方米=1000立方分米
(3)思考:1立方米等于多少立方厘米呢?
3、小结:相邻的两个体积单位间的进率是1000。
4、比较:长度单位,面积单位和体积单位及进率,比较它们有什么不同处?
(名称、进率两方面。)
(二)体积单位的互化。(演示课件“体积单位间的进率”)
1、出示例3:8立方米、0.54立方米各是多少立方分米?
8立方米=( )立方分米
0.54立方米=( )立方分米
教师:看一看问题是从高级单位向低级单位转换,还是低级单位向高级单位转换?
想:因为1立方米=1000立方分米,8立方米有8个1000立方分米
列式:1000×8=8000,填8000
(第2题同上理) 1000×0.54=540,填540
2、出示例4:3400立方厘米、96立方厘米各是多少立方分米?
3400立方厘米=( )立方分米
96立方厘米=( )立方分米
教师:审题时首先要注意什么?试说出这两道小题的解答过程和算理。
想:因为1000立方厘米为1立方分米, 3400立方厘米中包含有多少个1000立方厘米,就有几立方分米,列式:3400÷1000=3.4,填3.4
(第2题同上理)96÷1000=0.096填0.096
3、教师:请对比例3,例4,说一说这两道题有什么不同?
板书:
(例3下面)高级单位→低级单位,用进率×高级单位的数。
(例4下面)低级单位→高级单位,用低级单位的数÷进率。
4、教师:想一想,体积单位间的转化与我们学过的长度单位,面积单位的转化有什么相同处与不同处?(换算的方法相同,但进率不同。)
(三)练习。
1、2立方米80立方分米=( )立方米
提示:哪部分需要转化?没转化的部分如何办?
板书:2+80÷1000=2+0.08=2.08,填2.08
2、5.34立方分米=( )立方分米( )立方厘米
提示:哪部分可以直接填?哪部分需要转化?
板书:1000×0.34=340 填5和340。
3、3.09立方米=( )立方米( )立方分米
老师:从上面三道题的解答中,你们有什么体会?
(复名数与单名数的互化,除了要注意是由高级单位向低级单位转化还是低级单位向高级单位转化外,还要注意审清题中哪一部分需要转化。)
(四)练习解决实际问题。
出示例5:一块长方体钢板长2.2米,宽1.5米,厚0.01米。它的体积是多少立方分米?
方法一:2.2×1.5×0.01=0.033(立方米)
0.033立方米=33立方分米
方法二:2.2米=22分米 1.5米=15分米 0.01米=0.1分米
22×15×0.1=33(立方分米)
答:这块钢板的体积是33立方分米。
三、巩固反馈。
1、口答填空,说出计算过程。
0.9立方米=( )立方分米 540立方厘米=( )立方分米
38立方分米=( )立方米 4立方分米50立方厘米=( )立方分米
10.35立方米=( )立方米( )立方分米
2、判断正误,并说明理由。
0.5立方米=500立方厘米( ) 2.6立方分米=2立方米60立方厘米( )
四、课堂总结。
1、体积单位的进率。
2、体积单位的转化方法。
板书:
五、课后作业。
1、4平方米=( )平方分米
4立方米=( )立方分米
2.5平方米=( )平方分米
2.5立方米=( )立方分米
2、0.3立方分米=( )立方厘米
1.08立方米=( )立方分米
4600立方分米=( )立方米
3450立方厘米=( )立方分米
六、板书设计
体积单位的教学设计 第19篇
教学内容:
教科书第111---113页相应的“做一做”,练习二十九的第1~3题、
教学目的:
1、通过观察、实验,使学生初步建立“体积”的概念,知道计量体积,要用体积单位、认识常用的体积单位:立方米、立方分米、立方厘米、知道1立方厘米、1立方分米、1立方米的实际大小、
2、使学生知道计量物体的体积,就要看它所含体积单位的个数,建立关于体积大小的空间观念、
3、使学生初步了解体积单位与长度单位、面积单位的区别和联系、
4、在学生学习活动中体现阶梯式评价。
教具、学具准备:
1、教师准备:
(1)实验器材:量杯、石块、水、
(2)1立方厘米、1立方分米的实物模型,用3根1米长的木条钉成的直角架、
(3)大小不同的长方体、正方体实物、
(4)多媒体课件、
(5)桌椅摆放:六组,每两组对称形。
2、学生准备:
(1)1立方厘米、1立方分米的模型、
(2)长方体(正方体)纸盒或实物、
教学过程:
一、谈话导入
同学们,我们五年三班的同学特别喜欢参加学校举行的各种各样的比赛,是吗?而且每次都取得不凡的成绩。作为你们的班主任老师,我感到特别的骄傲。那么现在,我们就来一个小小的比赛,好不好?
第一轮:比眼力。依次发四条长短不同的线段。指出先谁拿,后一起拿。
第二轮:比运气。教师出示四个不同的平面图形。学生随意点。
第三轮:比判断力。依次发四个不同的长方体、
谈话:比较两条线段的长短,比较两个平面图形的大小,比较两个立体图形的大小、它们的意思相同吗?
通过谈话后,引出“长度”、“面积”、“体积”等名称,提出问题:什么叫做物体的体积呢?(板书课题)
二、学习新课
看到这个课题,你有什么要问吗?
什么叫体积?体积单位有哪些?体积和表面积什么不同?(师板书:意义、单位、体积和表面积的区别)
师:提得很好,下面我们就来共同探讨这些问题。
(一)、建立体积概念
那么,什么叫做物体的体积呢?你们想怎样得到这个问题的答案?自选学习方式。
教师拿出盛有半杯红色水的玻璃杯和用绳子捆着的石头一块,用手提绳子将石头浸入玻璃杯的水中、教师:注意观察放入石头后水面有什么变化、教师将石头提起,再放入水中一次、然后让学生说一说观察的结果、学生:放入石头,水面上升、教师:把石头放入水里后,水面为什么会上升呢?请几位学生回答后,教师指出:石头占有一定的空间,放入水里后,使得水所占的空间变大了,所以水面就上升了、
(1)实验:引导学生观察实验过程,注意实验过程中量杯里水位的变化情况、想一想,这说明了什么?
学生做一个实验,大家还要仔细观察,动脑筋思考、装入满满一杯沙子、然后把沙子倒出,放入一块长方体积木,请一位同学来再将沙子装入玻璃杯,然后让学生说出实验的结果、学生:沙子多出来了、大家想一想,为什么沙子会多出来呢?让几位学生说一说自己的想法、在学生发言的基础上概括、
(2):因为这块积木占有一定的空间,积木放到杯子里就占据了杯子的一部分空间,所以沙土就装不下了、
(3)(自学)在水杯中放入一块石头,在水面处做一个黄色记号。
拿出石块后,再放入一大些的石块,在水面处做绿色记号。
观察讨论:在水杯中两次放入大小不同的`石块,有什么现象发生?为什么会出现这个现象,说明什么?
汇报归纳:水杯中放入石块后,石块占据了空间,把水向上挤,水面向上升。石块大占据空间大,水面上升得高;
石块小占据空间小,水面上升得低。
讨论、归纳:物体占有空间、物体所占空间有大有小、
(2)教师出示大小不同的长方体、正方体实物、让学生观察,说一说,哪个物体所占空间较大,哪个物体所占空间较小?或者说哪个物体的体积较大,哪个物体的体积较小?
让学生用自己的话说一说“体积”的意义、
结论:物体所占空间的大小叫做物体的体积、教师再进一步讲解、教师:所有的物体都占有一定的空间,比如教室占据了一个较大的空间,课桌、讲台又占据了教室里的一部分空间;
课本、文具盒占据了书包里的一部分空间,等等(板书)
(3)巩固、看教科书第111页的“做一做”、
哪堆木块的体积大?哪堆木块的体积小?并说明理由、
(二)认识体积单位
请同学们观察自己带的长方体或正方体、同学之间可以互相比一比,你们能确切说出它们的体积大小吗?
教师指出:在实际生活和生产中,有时只需要凭感觉判断出谁大谁小就可以,但是有时也需要知道物体到底有多大,这就要我们精确地计量物体的体积。计量体积就要用体积单位,常用的体积单位有立方厘米、立方分米、立方米(板书)下面我们就认识一下这些体积单位。
1、认识1立方厘米。
(1)教师出示一块1立方厘米的模型井指出:这就是体积为1立方厘米的正方体。
(2)分组观察探究,然后汇报:你知道了什么?(每四个人一组,每组一个1立方厘米的正方体模型)
引导学生:
看一看:1立方厘米的体积比较小,是正方体。
量一量:1立方厘米的正方体的棱长是1厘米。
说一说:棱长1厘米的正方体体积是1立方厘米(板书)
想一想:体积是1立方厘米的物体比较小。
引导学生说出:体积大约是1立方厘米的物体,如:蚕豆等物体,再引导学生用手势表示一个食指尖大约是1立方厘米。
议一议:计量体积使用立方厘米比较恰当的物体。(手指尖、玻璃珠、骰子)
2、认识1立方分米。
(1)师出示一块1立方分米的体积模型并指出:这就是体积为1立方分米的正方体。
(2)分组观察探究然后汇报:你知道了什么?
引导学生:
看一看:1立方分米的体积大一些,是一个正方体。
量一量:1立方分米的正方体的棱长是1分米。说一说:棱长1分米的正方体,体积是1立方分米。(板书)
想一想:体积是 1立方分米的物体比 1立方厘米的物体大。引导学生说出体积大约是1立方分米的物体。再引导学生做出:用手势表示1立方分米。
议一议:计量体积使用立方分米比较恰当的物体。(粉笔盒、药盒、礼品盒等。)
3、认识1立方米
学生分组观察探究
引导学生:说一说:根据以上两个体积单位的推测,什么样的物体的体积是1立方米?(板书:棱长1米的正方体,体积是1立方米)教师用三棱架在墙角演示1立方米,注意观察形状大小。教师用棱长1米的架子演示1立方米的大小,然后让学生估一估,用多少个1立方分米的正方体拼起来有1立方米、
想一想:列举物体体积大约是1立方米的物体,如:两个课桌合在一起;
电视机箱子……。
启发学生借助四个同学围成的空间来表示1立方米。让学生看一看1立方米的体积有多大、教师:1立方米的空间大约可以容纳8位小学生、教师请8位学生钻进架子里,半蹲着,充满棱架、让全班同学体会1立方米的实际大小、(装电视机的纸箱、电脑台,洗衣机等等。)
议一议:计量体积使用立方米恰当的物体。4、互相议论:这三个体积单位的共同点是什么?不同点是什么?
引导总结:体积单位分别是几个规定了棱长大小的正方体。1立方厘米就是棱长1厘米的正方体……
4、巩固体积单位的认识、
以前我们学习了长度单位、面积单位,今天我们又学习了体积单位,那么它们有什么不同呢?
(1)判断:(投影出示,113页做一做1)
(2)操作:剪一条1分米长的线,用纸剪一个1平方分米的正方形,拿出1立方分米的模型。
教科书第113页“做一做”的第1题,让学生充分说一说它们有什么不同、引导学生讨论归纳三者的不同点,使学生知道:长度单位是一条线段,面积单位是一个正方形,体积单位是一个正方体。
三、课堂练习,形成技能。
1、用多大的体积单位表示下面物体的体积比较适当?
(1)、一块橡皮的体积约是8 ( )
(2)、一台录音机的体积约是 20 ( )。
(3)、五年级语文课本的体积约是297( )。
(4)、一个蓄水池的体积是4.2 ( )。
2、操作练习。摆一摆、想一想、(可以小组合作完成)
用12个棱长1厘米的正方体木块摆成不同形状的长方体。有多少种不同的摆法?它们的长、宽、高各是多少?体积各是多少?把你摆的情况记录下来,看你能发现什么?
想一想:体积数是12立方厘米,跟各种摆法的长方体的长、宽、高的分米数有什么关系?2、
3、书113页做一做第2题,通过阅读操作练习引导学生归纳:不论物体是什么形状,含有几个体积单位,它的体积就是多少。启发学生发现大家所摆出的长方体的形状不同,长、宽、高也就不同,但是体积都是相同的、)教师再提问:这是为什么?(因为这些不同形状的长方体所含有的体积单位是一样的、)
4、下面的图形都是由棱长1厘米的小正方体拼成的,说出它们的体积各是多少立方厘米。(填书:练习二十九第3题)你是怎样数出来的,怎样数简便?
5、下图中哪个是长度单位,哪个是面积单位,哪个是体积单位?它们有什么不同?
6、让学生闭上眼睛,想象1立方厘米的体积有多大,1立方分米的体积有多大,身边什么物体的体积接近1立方厘米或1立方分米、
7、估量大约多少个1立方厘米的小方块拼起来有1立方分米、
四、可随机自由提问。
请同学们把这堂课学习的内容整理一下,你学到了什么?学会有关体积的知识有什么用呢?
根据学生发言归纳、
教学反思:
本节课教学的主要任务是使学生理解“体积”的概念,知道计量体积要用体积单位、认识常用的体积单位:立方厘米、立方分米、立方米,建立关于1立方厘米、1立方分米、1立方米的实际大小的空间概念、教学之后认真反思觉得这个教学任务基本完成。
本节课教学的关键是提供充分的直观素材,让学生通过实验、观察、触摸、拼摆、想象等多种活动,积累感知,建立表象,形成概念,教学设计从比较线段的长短,平面图形的大小、立体图形的大小引入,让学生在与“长度”、“面积”等概念的比较中认识“体积”,便于帮助学生在概念系统中理解新概念、为了更好的体现我的 “分层分组”的教学特色。我将新课分三个层次、首先是通过观察实验,从实验情境中领悟物体占有空间→物体所占空间有大有小→物体所占空间的大小叫做物体的体积、让学生选择自己喜欢的学习方式来学习。接着让学生观察和比较实物的大小,体验到要确切知道物体体积的大小,要用体积单位来计量、并引导学生对常用的体积单位通过看一看、量一量、说一说、想一想、议一议等方式进行学习。在此基础上,通过观察、比划、想象、比较;
建立1立方厘米、1立方分米、1立方米的实际大小的空间观念、第三层次,通过小组合作拼一拼、摆一摆、说一说体积大小,深化对体积和体积单位的认识,并进一步理解:计量体积,就是看物体所含体积单位的个数、最后,对全课内容进行整理归纳,形成整体认知、
巩固练习对教科书练习稍作引申,放在最后,要求学生记录下摆出的几种不同长方体的长、宽、高和它们的体积,并想一想“你发现了什么”,为下一课学习体积的计算做铺垫、
体积单位的教学设计 第20篇
一、教学内容:
教科书第31——32页练习七第5——10题。
二、教学目标。
1、能正确应用体积单位间的进率进行名数的变换,并解决一些简单的实际问题。
2、进一步培养学生的分析问题解决问题的能力。
3、激发学生的数学学习信心。
三、学重点与难点:
能正确应用体积单位间的进率进行名数的变换,并解决一些简单的实际问题。
四、教学过程。
(一)复习。
1、谈话:上节课我们认识了体积单位之间的进率,谁能说一说体积单位之间的进率是怎样的?它与面积单位、长度单位有什么不同?
2、这节课我们就继续运用这些知识来解决实际问题。
(二)巩固练习。
1、填空。
(1)300厘米=( )分米,4.6米=( )分米,
300平方厘米=( )平方分米,4.6平方米=( )平方分米。
300立方厘米=( )立方分米,4.6立方米=( )立方分米。
(2)9250立方厘米=( )立方分米,50立方分米=( )立方米。
(3)9.8升=( )立方分米=( )毫升,0.5立方米=( )立方分米=( )升。
2、做练习七的第5题。
(1)学生看图算出两堆木块的体积。
(2)引导学生思考:每堆木块的体积与它右边的容器的容积有什么关系?再来进行推算。
3、做练习七的第6题。
(1)学生独立作业时,再三提醒学生认真审题。
(2)订正时,请学生说一说相邻两个面积单位之间的进率是多少.
4、做练习七的第7题。
(1)学生独立完成。
(2)交流是引导学生注意每一个计算结果的单位写得是否正确。
5、做练习七的第8题。
(1)学生独立解答,集体订正。
(2)引导学生说说怎样想的?
6、做练习七的第9题。
学生读题后,先集体进行分析,在引导学生独立解答,集体订正。
7、做练习七的第10题。
学生读题后,引导学生说说从里面量的数据和从外面量的数据分别有什么关系,然后再由学生独立解答,集体订正。
(四)能力空间。
1、砌一道长24米,宽20米,高3米的砖墙,如果用每块体积的18立方分米的砖来砌,一共要这样的砖多少块?
2、每瓶药水50毫升,装瓶,一共有药水多少升?如果有4.5升药水,一共可以装多少瓶?
(五)全课。
这节课我们学习了哪些内容?你觉得那些地方值得我们引起注意?引导学生进行。
(六)作业。
1、课前思考:
(1)认真学习潘老师与孙老师的备课,与孙老师有同感,也想补充复名数改写。
(2)第二,在完成教材上内容的同时,可结合《天天练》上的习题进行讲评,因为教材上这课内容中单位换算的习题不多,在《天天练》倒有不少相应的实际问题中有这方面的训练。
(3)第三,在教学新授的同时,边利用自习课时间复习前面的知识,发现不少学生教材上的内容也有遗忘。
2、补充题:
3时20分=( )分,2.41吨=( )吨( )干克,3080克=( )千克( )克,5分40秒=( )秒。
3千克4克=( )千克,1840千克=( )吨( )千克,8.32平方米=( )平方米( )平方分米。
7.004 立方分米=( )立方分米( )立方厘米。
学生对书上的练习掌握的不错,作业的反馈情况也比较理想,就是对于补充的复名数与单名数之间的改写掌握的还不够。打算在自习课上再加强训练。
3、课后反思:
今天的数学课是一节练习课,针对体积单位换算和体积、表面积计算进行了综合练习,主要完成了教材上的练习。分析一下学生的练习情况:
(1)类似教材第32页上第7题这种已知长方体的长、宽、高或正方体棱长求表面积和体积的题目,是最基本的,所以每位学生都能正确列出算式来计算表面积或体积,但计算过程中如果涉及到小数乘法错误就较多。
(2)教材第8、9、10题涉及到表面积、体积和容积的计算,大部分学生也能在理解题目意思的基础上正确列出算式进行解答,但计算的正确率仍有待提高,还有少数学生不会分析题中要求解决的问题是计算表面积还是体积,以及如何根据题中的信息来正确列式。
(3)题目中如有些数据的单位名称不一致,学生往往置之不理,把它们当成单位是一样的来计算。
针对这些情况,在后面的单元复习课中要加强指导和相应的练习进行训练。
由于前面补充了不少长正方体表面积与体积的习题,自认为教材上的习题对学生来说比较简单,没有想到独立作业中,学生的正确率不高。
4、存在问题:
(1)部分学生将生活问题转化成数学问题有困难,个别学生需要老师的帮助才能转化,独立思考根本不行。
(2)思考方法正确了,小数乘法计算不过关。
热门文章:
- 党风党性警示教育内容2024-11-01
- 党风党纪自我剖析材料范文2024-11-01
- 党费收缴存在的问题人民日报(4篇)2024-11-01
- 党费减免讨论会议纪要(2篇)2024-11-01
- 过党生日有感(4篇)2024-11-01
- 文化自信党员(5篇)2024-11-01
- 2024党员干部贿赂多少钱违法(3篇)2024-11-01
- 党管党员党管干部存在问题(2篇)2024-11-01
- 深入查摆在落实管党治党责任方面的不足(5篇)2024-11-01
- 党委班子画像报告(3篇)2024-11-01
相关文章:
- 2023历史教学设计案例3篇(范文推荐)2023-02-13
- 《春晓》教学设计五篇(精选文档)2023-02-14
- 《最后一头战象》教学设计9篇【优秀范文】2023-02-14
- 2023年度《倒数认识》教学设计6篇(完整)2023-02-14
- 2023年度《周庄水韵》教学设计9篇【优秀范文】2023-02-15
- 《搭石》优质教学设计9篇2023-02-15
- 2023年度争吵教学设计4篇2023-02-15
- 《穷人》教学设计7篇2023-02-15
- 2023年《老师,您好!》教学设计3篇【优秀范文】2023-02-15
- 2023年度羽毛球教学设计9篇【精选推荐】2023-02-16
- 2023年体积和体积单位教案12篇2023-07-08
- 主持稿串词热门7篇2023-06-30
- 小学新班主任工作总结热门(完整)2023-07-07
- 经营报告热门14篇(完整文档)2023-07-09
- 2023年度信息报告热门11篇2023-07-09
- 培训报告怎么写热门11篇2023-07-09
- 医院年度工作总结及计划热门13篇2023-07-09
- 2023年度简易版离婚协议书热门7篇(精选文档)2023-07-14
- 2023热门16篇2023-07-15
- 设备采购合同热门20篇(全文完整)2023-07-15
- 2023年度辞职信总结热门16篇(完整文档)2023-07-18