昆博公文网
当前位置 首页 >专题范文 > 公文范文 >

分数乘教学设计必备10篇

发布时间:2023-07-13 09:15:02 来源:网友投稿

分数乘教学设计第1篇教学目标:结合具体事例,经历自主解决问题、学习分数乘整数的计算方法的过程。理解分数乘整数的计算方法,会计算分数乘整数的乘法。体验用乘法解决连加问题的价值,激发学习新知识的愿望。教学下面是小编为大家整理的分数乘教学设计必备10篇,供大家参考。

分数乘教学设计必备10篇

分数乘教学设计 第1篇

教学目标:

结合具体事例,经历自主解决问题、学习分数乘整数的计算方法的过程。

理解分数乘整数的计算方法,会计算分数乘整数的乘法。

体验用乘法解决连加问题的价值,激发学习新知识的愿望。

教学重点:分数乘以整数的计算方法。

教学难点:正确运用先约分,再相乘的方法进行计算。

教学过程:

一、复习铺垫

1、让我们先来做几道口算题,你能直接口算出结果吗?

出示:

3/8 +1/8= 1/3+1/5= 7+9=

1/4+1/4+1/4= 2/9 +2/9= 3+3+3+3+3+3=

2、学生口答。

3、最后一题你是怎么口算的?还可以怎样口算?——引导学生说出用乘法3×5或5×3来计算。

4、师小结:是啊,求几个相同加数的和的简便运算可以用乘法。

质量问题

教师口述问题,让学生用自己喜欢的方法解决。

交流学生计算的方法和结果。

2/5+ 2/5+ 2/5 2/5 ×3

=2+2+ 2/5 = 2*3/5

=6/5( 千克 ) = 6/5( 千克 )

3、比较这两种方法,有什么联系和区别?

联系:两种方法的结果是一样的。

区别:一种方法是加法,另一种方法是乘法。

教师板书:
2/5+ 2/5+ 2/5= 2/5×3

为什么可以用乘法计算?

加法表示3个2/5相加,因为加数相同,写成乘法更简便。

2/5×3表示什么?怎样计算?

表示3个2/5的和是多少?

2/5+2/5 + 2/5=2+2+2/5 =2*3/5 = 6/5 用分子2乘3的积做分子,分母不变。

6、 提示:为计算方便,能约分的要先约分,然后再乘。

三、归纳、概括:

分数乘整数,用分子和分母相乘的积做分子,分母不变

试一试

让学生独立观察图并列式计算。交流时,说一说是怎样列式的,怎样算的。

练一练

教学后记:

这节课的教学任务主要有两点,就是掌握分数乘整数的意义,以及掌握分数乘整数的计算法则,在整数乘法 上,分数乘整数的意义学生比较易于掌握,我利用它的意义改写成 ,进而从 ,这一环节,我特别注重引导学生,观察板书,并及时给予提示,所以学生的分数乘整数的计算方法掌握得不错。但是不足的是,学生在约分时,有部分学生没有约分完,以后要不断训练学生约分的方法。

分数乘教学设计 第2篇

教学内容:

教科书第10~11页例3、例4。

教学目标

1、通过操作活动使学生理解分数乘分数的算理,从而掌握计算方法。

2、发展学生的观察推理能力。

教具、学具准备

1、根据例题制作的挂图、投影片或多媒体课件。

2、每个学生准备一张长15 cm、宽10 cm的长方形纸。

教学过程

一、创设情境引入新课

教师谈话,以学校粉刷教室或家庭装修新房等学生身边的实例引入。

出示粉刷墙壁的画面,给出条件:每小时粉刷这面墙的1/5。

师:能提出什么问题?

学生提问题,教师板书。

以分数乘整数的问题作研究内容,如“4小时可以粉刷这面墙的几分之几?”

师:怎样列式?(板书1/5×4)

师:列式的依据是什么?为什么用乘法?(工作效率×工作时间=工作总量)

让学生计算,并说说怎样计算。

师:我们解决了4小时粉刷多少的问题,那么1/4小时可以粉刷这面墙的几分之几?(出示问题)怎样列式?依据是什么?

学生讨论汇报。(根据“4小时可以粉刷这面墙的几分之几”的列式类推出,或根据工作效率×工作时间=工作总量,可以列出1/5×1/4)。板书算式。

师:(结合板书讲解)我们已经知道求4小时粉刷这面墙的几分之几,就是求4个1/5是多少。求1/4小时粉刷这面墙的几分之几,就是求1/5的1/4是多少。那么1/5×1/4如何计算呢?这就是我们今天学习的内容。

板书课题:分数乘分数

二、操作探究计算算理

1、师:下面我们来探讨分数乘分数怎样计算。我们每人准备了一张纸,把它看作这面墙,先在纸上涂出1小时粉刷的面积,应该涂出这张纸的几分之几?

学生操作。

学生交流是怎样涂的?(用折或量、分的方法把纸平均分成5份,涂出其中的1份,如下图)

师:我们已经知道,求1/4小时粉刷这面墙的几分之几,就是求1/5的1/4是多少。再涂出1/5的1/4,小组讨论一下,应该怎样涂?

小组汇报(把涂出的1/5部分再平均分成4份,涂出其中的1份)。

学生自己涂色。

师:从涂色的结果看,1/5的1/4占这张纸的几分之几?1/20

师:我们可以得到1/5×1/4=1/20。根据涂色的过程,你能说说是怎样得到的吗?

学生讨论交流汇报。

教师归纳(用多媒体或投影片演示涂色过程):我们先把这张纸平均分成5份,1份是这张纸的1/5,又把这1/5平均分成4份,也就是把这张纸平均分成了5×4=20份,1份是这张纸的1/20。由此可以得到

(板书)。

三、迁移延伸,归纳法则

提出问题:3/4小时粉刷这面墙的几分之几?

师:“3/4小时粉刷这面墙的几分之几?”是求什么?(1/5的3/4是多少?)

小组讨论并操作:怎样列式?涂色表示15的34。怎样计算?

交流计算方法和思路:与前面一样,也是把这张纸分成5×4份,不同的是取其中的3份,可以得到

(板书)

根据板书的两个计算算式讨论归纳计算方法。

通过学生讨论交流得到:分数乘分数,用分子乘分子,分母乘分母。

四、反馈提高,巩固计算

出示例4,读题。

师:怎样列式?依据什么列式?

由学生讨论得到:根据“速度×时间=路程”,列出3/10×2/3。

让学生独立计算。通过请学生在黑板演算或用投影展示学生的演算过程及结果交流计算情况,强调能约分的要先约分再乘,这样可以使计算简便。并结合学生的演算情况说明约分的书写格式。

课堂总结:今天我们学习了什么?分数乘分数怎样计算?

学生独立完成“做一做”。

分数乘教学设计 第3篇

教学准备:

学生每人准备两张长方形纸。

教学过程:

一、复习导入,沟通知识。

师:老师这有一组题,你能解决吗?出示:

列算式,解答。

1、5的1/2是多少?

2、15的1/4是多少?

3、100的1/2是多少?

4、80的1/10是多少?

这几道题,有什么共同特点?

生:这几道题都是求一个数的几分之几是多少?用乘法计算的。

师:同学们,老师这还有几道口算题,相信你们能口算正确。出示口算题:

3/52 101/2 2/36 117/12 3/49

1/3 1/2

师:最后一道题,与前面几道题有什么不同?

生:前面都是整数与分数相乘的乘法,最后一道是分数乘分数,不会算。

师:那分数与整数相乘,你是怎么计算的?

生:分数与整数相乘,用分子乘整数的积做分子,分母不变。

师:
那分数乘分数该怎样计算呢?今天,我们就一起学习分数乘分数。(板书课题)

二、动手操作,自主探究。

活动一:

师:同学们,课前老师让大家准备了长方形纸,现在,拿出其中的一张,我们一起玩一个折纸游戏。请大家按老师的要求折一折。

(1)把这张长方形纸对折,这时你得到这张纸的几分之几?能列算式吗?

学生边操作,边回答问题,教师相机板书:11/2=1/2

(2)在此基础上再对折,这时你得到这张纸的几分之几?能列一个算式吗?

学生可能答:11/4=1/4或1/21/2=1/4。如果学生不出现第二种情况,教师可出示教材示意图,提问,你发现1/2和1/4有关系吗?引导学生发现1/4就是1/2的1/2。

教师板书:1/21/2=1/4

活动二:

师:同学们拿出,课前准备的另一张纸,我们把它当作张大爷家的地。(师口述教材活动的内容)你能在这张长方形纸上折出题中的已知条件吗?

生动手折纸,并分别涂上不同的颜色。

师:蔬菜地的1/2种西红柿,西红柿地占整块地的几分之几?就是求什么?

生:就是求1/3的1/2是多少?

师:怎样列式?

生:1/31/2=

师:1/31/2得多少,我们先动手折一折,看是多少?

生动手折纸,涂色,发现1/31/2=1/6。

师:你能说说1/31/2为什么等于1/6吗?

学生可能这样回答:

生1:(结合折纸和涂色)因为求西红柿占整块地的几分之几?就是求1/3的1/2是多少,也就相当于把整块地平均分成了6份,取了其中的一份。

生2:(结合折纸和涂色)西红柿地是占蔬菜地的1/2,蔬菜地占整块地的1/3,求西红柿地占整块地的几分之几?就是求1/3的1/2是多少,也就相当于把整块地平均分成了32=6份,取了其中的一份。

师随学生的发言板书:1/31/2= 1/2*3=1/6

师:那问题(2)该怎样解答呢?同学们结合折纸图独立列式计算,然后和小组同学说一说,你是怎样想的。

师:谁把你的想法和大家说说?

生:(结合折纸和涂色)粮食作物占整块地的2/3,粮食作物的1/3种黄豆,求黄豆地占整块地的几分之几?就是求2/3的1/3是多少,也就相当于把整块地平均分成了33=9份,取了其中的2份

(师随学生发言板书:2/31/3 = 2*1/3*3 = 2/9 )

师:其他同学有不同意见,可以站起来说一说。

学生可以继续进行补充发言。

师:题目中只说粮食作物的1/3种黄豆,也没说是2份呀?这里的2是怎么回事?

(以此引起学生的争论,使学生明白,粮食作物占整块地的2/3,粮食作物的1/3种黄豆,黄豆的这一份包含了2小份)

师:有点明白了,那老师再补充一个问题,你帮着解答解答。如果粮食作物地剩下的这2/3(指图),种玉米,玉米地占整块地的几分之几?

生:2/32/3 = 2*2/3*3 = 4/9

师:给大家讲讲吧!(引导全体学生结合图理解其中的算理)

师:经过刚才的学习,你能总结一下,分数乘分数的计算方法吗?

(引导学生总结方法:分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。)

三、及时拓展,巩固新知。

1、完成试一试。师:通过刚才我们共同的努力,已经探究出了分数乘分数的计算方法,相信下面几道题一定难不住你。出示试一试中的题目,要求学生说出计算过程和结果。

2、完成练一练第1、2、3题。学生独立做,集体订正,订正时要求学生说名列式的想法及计算过程。

3、完成练一练第4题。学生独立做,订正时,请学生说明比较的方法。如果最后一题学生用乘法交换率进行比较,教师要给予表扬。

4、作业:练一练第5题。

教学后记:

在教学完这节课后,我觉得学生对一个数乘分数的意义的理解时还不够课透,以后继续加强这方面。对于一个数乘分数的计算方法学生比较容易掌握,但是有个别学生会把整数跟分子约分,有个别学生没有约到最简分数,以后不断加强学生的训练。

分数乘教学设计 第4篇

一、教学内容:

课程标准实验教材第8~9页的分数乘整数,例1、例2及“做一做”。

二、学习目标:

1、使学生理解分数乘整数的意义与整数乘法相同,掌握分数乘整数的计算法则。

2、使学生在掌握分数乘整数的计算法则的基础上,能够较熟练、正确地进行计算。

3、培养学生的合作探究意识及良好的逻辑思维能力。

三、教学重、难点:

教学重点:使学生在掌握分数乘整数的计算法则的基础上,能够较熟练、正确地进行计算。

教学难点:使学生弄清分数乘整数的算理。

四、教学准备:

教具准备:实物投影仪,多媒体课件,给每个小组准备一套大小完全一样的图形学具板,学生自己准备水彩笔。

教学过程:关键词:

设计意图 教学过程 二次备课

一、复习导入

1、5个12是多少?怎样列式?

2、++=

做第一题时,让学生说一说整数乘法的意义。做第二题时,让学生说一说这两道题有什么特点。

3、问题:两组意义相同,那第二组还可以怎样计算?

探究新知

1.出示例1主题图:人跑一步的距离相当于袋鼠跳一下的。人跑3步的距离是袋鼠跳一下的几分之几?

2.学生读题列式

(1)++

(2)×3

3.可以这样列式吗?为什么?

学生发表自己的想法,集体交流。

总结:求人跑3步的距离是袋鼠跳一下的几分之几,实际上是求3个是多少,所以用乘法计算。(教师结合线段图解释)

4.尝试:那×3该怎样计算呢?这就是我们今天要研究的分数乘整数。请同学们自己试着做做,有问题可以与同位商量一下。(揭示课题)

学生汇报:

(1)是2个,乘3后就得到6个,因此×3=×6=

(2)利用加法算乘法。

×3=++===

说明:中间的加法算式部分,可以省略不写。

5.通过这道题,你觉得分数乘整数该怎样计算?

学生总结:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。(板书)

6.出示练习:

×4×3×6

学生独立练习板演黑板,集体订正,并说说自己是怎样做的?

出示最后一题的两种做法:

(1)×6===

(2)×6==

乘得的积要化成最简分数,哪一种约分方法比较简单呢?

总结:在计算过程中能约分的先约分,使计算比较简单。

二练习:

1.计算

×8×3×2

学生独立练习,集体订正。

2.解决问题

出示第9页做一做的第2、3题:

先说说为什么用乘法,再列式计算。

3.课堂作业

练习二1、2题。

板书设计:分数乘整数

×3=×6=

×3=++===

总人数 全对人数 对题率 分析

分数乘教学设计 第5篇

教学内容:教科书第45-46页的例4、例5及相应的“试一试”,完成随后的“练一练”和练习九第1-5题。

教学目标:

1、通过例题的.直观操作,理解分数与分数相乘的意义,初步掌握分数乘分数的计算方法。

2、在探究活动中,让学生运用已有知识和经验,主动进行分析、观察、猜想验证、比较、归纳的过程,进一步发展学生初步的演绎推理和合情推理能力。

3、使学生通过学习进一步体会数学知识间的内在联系,感受数学知识和方法的应用价值,提高学好数学的信心。

教学重点:探索并掌握分数乘分数的计算方法,能正确计算。

教学难点:理解分数乘分数的算理。

教学过程:

一、复习

1.250千克的2/5是多少?

2.3米的5/9是多少?

指名口答

小结:求一个数的几分之几用乘法计算。

二、探究

1.学习例4

(1)创设情境:小明和小强是好朋友,小明到小强家去做客。小强请小明吃西瓜,他先切了一半留给爸爸妈妈,两人吃的各占了西瓜的一半的一半。请问:小明吃了整个西瓜的几分之几?

指名口答

画图理解:涂色部分是整个圆的几分之几?画斜线部分占1/2的几分之几?画斜线部分又是这个圆的几分之几?也就是求1/2的1/2是多少,可以怎样列式?你能列算式吗?

明确:求一个数的几分之几用乘法计算。

(2)继续创设情景:爸爸下班回来渴了,也吃了些西瓜,吃了这个西瓜的几分之几呢?

你能从图上看出来吗?

涂色部分是这个圆的几分之几?画斜线部分占1/2的几分之几?又是整个圆的几分之几?

同桌互相说一说,全班交流。

求1/2的3/4是多少,可以列怎样的算式。

(3)读两个乘法算式,仔细观察一下这两个算式与已学过的乘法算式有什么不一样?

(4)揭示课题。

(5)大胆猜测:分数与分数相乘应该怎样计算?

2、学习例5

(1)出示第一个算式:2/3×1/5,你会计算2/3×1/5的积吗?尝试计算。交流计算结果。怎样证明计算结果是正确的呢?

分数乘教学设计 第6篇

教材分析

《分数乘整数》是苏教版小学数学第十一册第三单元的内容。这节的内容是在已学整数乘法的.意义和分数加法计算的基础上进行教学的。分数乘整数的意义和整数乘法的意义相同,只是这里变成了分数。对今后求几个加数的和的简便运算用乘法来解决。注重培养学生的计算能力。

学情分析

学生已学过整数乘法的意义,约分和分数加法计算。学生可以利用分数加法来推导出分数乘整数时只需把分子和整数相乘的积做分子,分母不变。

学生在刚学习分数乘法时,可能会有时想不到先约分,在课堂教学时要注意加以强调。

教学目标

1、使学生理解分数乘整数的意义。

2、培养学生的合作探究意识和良好的逻辑思维能力。

3、让学生在学习中获得成功的体验。

教学重点和难点

重点:理解分数乘整数的意义。

难点:掌握分数乘整数的计算法则。

教学过程

1、让学生动手做绸花,加深了学生对求几个相同加数的和的简便运算用乘法来算。

2、让学生操作涂彩纸表示绸带,加强学生对分数意义的推算。

3、理解分数乘法的意义,认识分数乘法算式,加深理解两个因数相乘,交换因数的位置积不变。

4、小结。

分数乘教学设计 第7篇

课题:

分数乘整数

教学内容:

教材第8页的例1,第9页的例2以及“做一做”,练习二中的第1、2题。

教学目标:

让学生掌握分数乘正整数的计算方法,并能准确地进行计算。

重难点、关键

分数乘整数的计算方法。

教学准备:

电脑课件

教学过程:

一、旧知铺垫

1、计算下列各题

1/5+ 2/5 3/10+1/10+7/10 3/14+3/14+3/14

过程要求:

(1) 写出计算过程。

(2) 说一说分数加法的计算方法。

2、想一想,能不能把 3/14+3/14+3/14改写成乘法算式呢?

二、探索新知

1、教学例1

(1) 出示例题

根据题意,电脑课件呈现示意图。

(2) 根据题意列出解答算式:

2/11+ 2/11+ 2/11= 2+2+2/11 = 6/11

2/11×3= 6/11

(3)探索分数乘整数的计算方法。

师:2/11×3= 6/11,说一说你是怎么想的?

① 学生在小组交流各自的想法

② 小组讨论后反馈思维的过程和结果

教师板书:2/11+ 2/11+ 2/11= 2+2+2/11 = 6/11

总结分数乘整数的计算方法。

A、 学生口述分数乘整数的计算方法;

B、 教师整理并板书:

分数乘整数,整数与分子相乘的乘积作分子,(数学教案 )分母不变。

2、教学例2

计算:3/8×6

(1) 学生独立计算。

(2) 交流计算方法和步骤。

(3)归纳:能约分的要先约分,再计算。

三、巩固练习

1、完成课本“做一做”。

(1) 学生独立完成,然后计算过程和结果。

(2)第3题,说一说你是怎样计算的?怎样想的?

2、课本练习二第1、2题

四、课后作业设计

计算

5/6× 7 4/13×8 3/8×3 2/15×4

3/10×5 4/9 ×3 27×2/3 16×5/32

五、列式计算

1、3个2/5是多少?

2、7/12的6倍是多少?

3、5/14扩大7倍以后是多少?

4、3/16与24的积是多少?

课后反思:本部分知识相对来说简单,学生接受的比较快,容易掌握。

分数乘教学设计 第8篇

教学目标

使学生理解分数乘整数的意义,掌握分数乘整数的计算法则。

教学重点

使学生理解分数乘整数的意义,掌握分数乘整数的计算法则。

教学难点

引导学生总结分数乘整数的计算法则。

教学过程

一、设疑激趣

(一)下面各题怎样列式?你是怎样想的?

5 个12 是多少?10 个23 是多少?25 个70 是多少?

(概括:整数乘法表示求几个相同加数的和的简便运算)

(二)计算下面各题,说说怎样算?

+ + = + + =

说一说,这两道题目有什么区别和联系?第二小题还有什么更简便的方法吗?请你自己试一试。

同学之间交流想法:
+ + = = =

×3 这个算式表示什么?为什么可以这样计算?

教师板书:
+ + = ×3=

为什么只把分子与整数相乘,分母10 不和3 相乘?

二、提出问题

(一)出示例1 小新、爸爸、妈妈一起吃一块蛋糕,每人吃 块,3 人一共吃多少块?

1、读题,说说 块是什么意思?

2、根据已有的知识经验,自己列式计算

三、解决问题

(一)学生汇报,并说一说你是怎样想的?

方法1 :
+ + = = = (块)

方法2 :
×3= + + = = = = (块)

(二)比较这两种方法,有什么联系和区别?

联系:两种方法的结果是一样的。

区别:一种方法是加法,另一种方法是乘法。

教师板书:
+ + = ×3

(三)为什么可以用乘法计算?

加法表示3 个 相加,因为加数相同,写成乘法更简便。

(四) ×3 表示什么?怎样计算?

表示3 个 的和是多少?

用分子2 乘3 的积做分子,分母不变。

(五)提示:为计算方便,能约分的要先约分,然后再乘。

四、归纳、概括:

(一)结合 = ×3= 和 + + = ×3= ,说明分数乘整数的意义与整数乘法的意义相同,都是表示求几个相同加数的和的简便运算。

(二)分数乘整数计算方法:用分子和整数相乘的积做分子,分母不变。能约分的先约分。

五、拓展应用

(一)基本练习

1、改写算式

+ + + = ( )×( )

+ + + + + + + = ( )×( )

2、只列式不计算:3 个 是多少? 5 个 是多少?

3、计算(说一说怎样算)

×4 ×6 ×21 ×4 ×8

思考:为什么先约分再相乘比较简便?

(二)综合练习

应用题

(1 )一个正方体的礼品盒,底面积是 平方米,要想将这个礼品盒包装起来,至少需要多少包装纸?

(2 )美术馆要进行美术展览,有5 张画是边长 米的正方形的,如果为这几幅画配上镜框,需要木条多少米?

(三)拓展练习

1、一条路,每天修 千米,4 天修多少千米?

2、一条路,每天修全路的 ,4 天修全路的几分之几?

六、板书设计

分数乘整数

分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

例1、小新、爸爸、妈妈一起吃一块蛋糕,每人吃 块,3 人一共吃多少块?

用加法算:
+ + = = = (块)

用乘法算:
×3= + + = = = = (块)

答:3 人一共吃了 块。

分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

分数乘教学设计 第9篇

教学目标

使学生理解分数乘整数的意义,掌握分数乘整数的计算法则。

教学重点

使学生理解分数乘整数的意义,掌握分数乘整数的计算法则。

教学难点

引导学生总结分数乘整数的计算法则。

教学过程

一、设疑激趣

(一)下面各题怎样列式?你是怎样想的?

5个12是多少?10个23是多少?25个70是多少?

(概括:整数乘法表示求几个相同加数的和的简便运算)

(二)计算下面各题,说说怎样算?

++=++=

说一说,这两道题目有什么区别和联系?第二小题还有什么更简便的方法吗?请你自己试一试。

同学之间交流想法:++==3××3=

×3这个算式表示什么?为什么可以这样计算?

教师板书:++=×3=

二、自主探索(一)出示例1小新、爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共吃多少块?

1。读题,说说块是什么意思?

2。根据已有的知识经验,自己列式计算

三、交流、质疑

(一)学生汇报,并说一说你是怎样想的?

方法1:

方法2:

(二)比较这两种方法,有什么联系和区别?

联系:两种方法的结果是一样的。

区别:一种方法是加法,另一种方法是乘法。

教师板书:

(三)为什么可以用乘法计算?

加法表示3个相加,因为加数相同,写成乘法更简便。

(四)×3表示什么?怎样计算?

表示3个的和是多少?

用分子2乘3的积做分子,分母不变。

(五)提示:为计算方便,能约分的要先约分,然后再乘。

四、归纳、概括:

(一)结合=×3=和++=×3=,说一说一个分数乘整数表示什么?

求几个相同加数的和的简便运算。

(二)分数乘整数怎样计算?

用分子和分母相乘的积做分子,分母不变

五、巩固、发展

(一)巩固意义

1、改写算式

2、只列式不计算:3个是多少?5个是多少?

(二)巩固法则

1、计算(说一说怎样算)

思考:为什么先约分再相乘比较简便?

2、应用题

(1)一个正方体的礼品盒,底面积是平方米,要想将这个礼品盒包装起来,至少需要多少包装纸?

(2)美术馆要进行美术展览,有5张画是边长米的正方形的,如果为这几幅画配上镜框,需要木条多少米?

(三)对比练习

1、一条路,每天修千米,4天修多少千米?

2、一条路,每天修全路的,4天修全路的几分之几?

六、课后作业

(一)的3倍是多少?的10倍是多少?

(二)一个正方形的边长是米,它的周长是多少米?

(三)一种大豆每千克约含油千克,100千克大豆约含油多少千克?1吨大豆呢?

七、板书设计

分数乘整数

分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

例1。小新、爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共吃多少块?

用加法算:

用乘法算:

答:3人一共吃了块

分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

分数乘教学设计 第10篇

【教学目标】

1.使学生通过自主探索,了解分数乘整数的意义,知道“求几个几分之几相加的和”可以用乘法计算,初步理解并掌握分数乘整数的计算方法。

2.使学生在探索分数乘整数计算方法的过程中,运用已有知识和经验主动进行探索性思考,并进行分析和归纳。

3.在探索计算方法的过程中,体验探索学习的乐趣,获得成功的体验。

【教学重难点】

理解分数乘整数的意义及分数乘整数计算方法的推导过程,能准确地进行计算。

【教学准备】多媒体课件

【教学过程】

一、创设情境,自主探索

谈话:同学们,学校要举行一次小手艺展示活动,班里有一位小强同学也想参加。看,他准备制作两个漂亮的风筝,这两个风筝还带有长长的尾巴呢。可就在制作这个风筝尾巴的时候,小强遇到困难了,咱们都来帮帮他,好吗?(课件出示信息)

谈话:从图中你收集到了哪些数学信息?

谈话:你能根据这组信息,提出一个数学问题吗?全班交流,

板书学生所提有价值问题:

做小鸟风筝的尾巴,一共需要多少米布条?(板书)

(2)做小鱼风筝的尾巴,一共需要多少米布条?(板书)

【设计意图】创设贴近学生生活实际的情境,以小强遇到困难了,我们都来帮帮他为契机,激发学生的学习兴趣,调动起学生自主探究解决问题的热情,为学生理解、感悟知识奠定基础。

二、算法交流,分析比较

(一)探索分数乘整数的意义。

1.独立思考,自主探索

谈话:求做小鸟风筝的尾巴,一共需要多少米布条,你会列式吗?

学生可能会出现以下算式:(根据学生的回答课件随机出示)

xxxxx

追问:你为什么这样列式?

相加的和,也可以用乘法计算?

明确:相同整数连加可以用乘法算式表示,由此可以联想到相同分数连加也可以用乘法算式表示。联想是一种很有意义的学习方法。所以分数乘整数的意义与整数乘法的意义相同,都是求几个相同加数的和的简便运算。

谈话:比较

这组乘法算式,跟我们以前学的有什么不同?

导出课题:分数乘整数(板书)

【设计意图】分数乘整数的意义是为探究分数乘整数的"计算方法服务的,在教学中,从做风筝尾巴要用多少米布条的实际问题为起点,引出分数乘整数的计算问题。把原来的乘法概念扩展到分数范围,激活了学生已有的知识经验,沟通了新旧知识的联系,初步了解了分数乘整数的意义。

(二)探索分数乘整数的计算方法。

1.独立计算感知算法。

谈话:你能尝试计算

1/2×5吗?请你在练习本上独立完成,写完之后在小组内交流一下自己的想法。

2. 算法交流,分析比较

谈话:你能交流一下你的算法吗?学生可能会出现以下方法:

(根据学生回答课件随机出示)

三、沟通优化,促进发展。

1.(1)算法的初步优化

谈话:你会计算7/18×9吗?请用自己喜欢的方法计算。

学生尝试独立计算后全班汇报交流。(根据学生回答课件随机出示)

谈话:比较一下这两种方法,你有什么感受?

小结:用相加和转化成小数的方法在计算中都存在很大的局限性,看来直接相乘的方法简便,易于计算。学生小结分数乘整数的计算方法。

(2) 探索计算中的简便方法

谈话:你能独立解决做小鸟风筝的尾巴,一共需要多少米布条这个问题吗?(学生独立算,然后小组交流)。

推荐访问:教学设计 分数 必备 分数乘教学设计必备10篇 分数乘教学设计(必备10篇) 分数乘分数教学设计

相关文章:

Top