公开课等比数列教案7篇
下面是小编为大家整理的公开课等比数列教案7篇,供大家参考。
作为一名教职工,就不得不需要编写教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。我们应该怎么写教案呢?下面是小编精心为大家整理的公开课等比数列教案【优秀7篇】,希望可以启发、帮助到大家。
等比数列教案 篇一
教学内容:
人教版小学数学教材六年级下册第107~108页例2及相关练习。
教学目标:
1.在学习过程中引导学生探索研究数与形之间的联系,寻找规律,发现规律,学会利用图形来解决一些有关数的问题。
2.让学生经历猜想与验证的过程,体会和掌握数形结合、归纳推理、极限等基本数学思想。
重点难点:
探索数与形之间的联系,寻找规律,并利用图形来解决有关数的问题。
教学准备:
教学课件。
教学过程:
一、直接导入,揭示课题
同学们,上节课我们探究了图形中隐藏的数的规律,今天我们继续研究有关数与图形之间的联系。(板书课题:数与形)
【设计意图】直奔主题,简洁明了,有利于学生清楚本节课学习的内容和方向。
二、探索发现,学习新知
(一)教师与学生比赛算题
1.教师:你知道等于多少吗?(学生:)
教师:那等于多少呢?(学生计算需要时间)教师紧接着说:我已经算好了,是,不信你算算。
2.只要按照这个分子是1,分母依次扩大2倍的规律写下去,不管有多少个分数相加,我都能立马算出结果。有的同学不相信是吗?咱们试试就知道。为了方便,我请我们班计算最快的同学跟我一起算,看看结果是否相同。谁来出题?
在学生出题后,老师都能立刻算出结果,并且是正确的,学生感到很惊奇。
3.知道我为什么算得那么快吗?因为我有一件神秘的法宝,你们也想知道吗?
【设计意图】一方面,教师通过与学生比赛计算速度,且每次老师胜利,使学生产生好奇心,再通过教师幽默的语言,吸引学生的注意力,激发学生的学习兴趣和求知欲。另一方面,为接下来学习例题做好铺垫。
(二)借助正方形探究计算方法
1.这件法宝就是(师边说边课件出示一个正方形),让我们来把它变一变,聪明的同学们一定能看明白是怎么回事了。
2.进行演示讲解。
(1)演示:用一个正方形表示“1”,先取它的一半就是正方形的(涂红),再剩下部分的一半就是正方形的(涂黄)。
想一想:正方形中表示的涂色部分与空白部分和整个正方形之间有什么关系呢?(涂色部分等于“1”减去空白部分)空白部分占正方形的几分之几?那么涂色部分还可以怎么算呢?,也就是说。
(2)继续演示,谁知道除了通分,还可以怎么算?
根据学生回答,板书。
(3)演示:那么计算就可以得到?。
3.看到这儿,你发现什么规律了吗?
4.小结:按照这样的规律往下加,不管加到几分之一,只要用1减去这个几分之一就可以得到答案了。
5.这个法宝怎么样?谁来说说它好在哪里?你学会了吗?
6.尝试练习
【设计意图】将复杂的数量运算转化为简单的图形面积计算,转繁为简,转难为易,引导学生探索数与图形的联系,让学生体会到数形结合、归纳推理的数学思想方法。
(三)知识提升,探索发现
1.感受极限。
(1)刚才我们已经从一直加到了,如果我继续加,加到,得数等于?再接着加,一直加到,得数等于?随着不断继续加,你发现得数越来越?(大)无数个这样的数相加,和会是多少呢?
(2)这时候你心中有没有一个大胆的猜想?(学生猜想:这样一直加下去,得数会不会就等于1了。)
(3)想象一下,如果我们在刚才加的过程中在正方形上不断涂色,那空白部分的面积就越来越?(小)而涂色部分的面积越来越接近?(1)也就是求和的得数越来越接近?(1)最终得数是1吗?你有什么方法来证明得数就是1?
(学情预设:学生提出书本的圆形图和线段图,若没有学生提出,教师自己提出。)
2.利用线段图直观感受相加之和等于“1”。
(1)书本上有两幅图,我们一起来看看(课件出示)。一幅是圆形图,一幅是线段图,你能看懂它的意思吗?请你想一想,然后告诉大家你的想法。
(2)学生看书思考。
(3)全班交流,课件演示,得出结论:这些分数不断加下去,总和就是1。
【设计意图】利用数与形的结合,让学生直观体会极限数学思想,并让学生经历猜想得数等于“1”,到数形结合证明得数等于“1”的过程,激发学生学习兴趣,培养学生探索新知的精神。
3.课堂小结。
对于这种借用图形来帮助我们解决问题的方法,你有什么感受?
教师小结:是的,“数”与“形”有着紧密的联系,在一定条件下可以相互转化。当用数形结合的方法解决问题时,你会发现许多难题的"解决变得很简单。
4.举一反三。
其实在以前的学习中,我们也常用到到数形结合的数学方法帮助我们解题,你能想到些例子吗?(如学生有困难,教师举例:一年级加法,分数的认识,复杂的路程问题线段图等。)
等比数列教案 篇二
教学目标
1、理解等比数列的概念,掌握等比数列的通项公式,并能运用公式解决简单的问题。
(1)正确理解等比数列的定义,了解公比的概念,明确一个数列是等比数列的限定条件,能根据定义判断一个数列是等比数列,了解等比中项的概念;
(2)正确认识使用等比数列的表示法,能灵活运用通项公式求等比数列的首项、公比、项数及指定的项;
(3)通过通项公式认识等比数列的性质,能解决某些实际问题。
2、通过对等比数列的研究,逐步培养学生观察、类比、归纳、猜想等思维品质。
3、通过对等比数列概念的归纳,进一步培养学生严密的思维习惯,以及实事求是的科学态度。
教材分析
(1)知识结构
等比数列是另一个简单常见的数列,研究内容可与等差数列类比,首先归纳出等比数列的定义,导出通项公式,进而研究图像,又给出等比中项的概念,最后是通项公式的应用。
(2)重点、难点分析
教学重点是等比数列的定义和对通项公式的认识与应用,教学难点在于等比数列通项公式的推导和运用。
①与等差数列一样,等比数列也是特殊的数列,二者有许多相同的性质,但也有明显的区别,可根据定义与通项公式得出等比数列的特性,这些是教学的重点。
②虽然在等差数列的学习中曾接触过不完全归纳法,但对学生来说仍然不熟悉;在推导过程中,需要学生有一定的观察分析猜想能力;第一项是否成立又须补充说明,所以通项公式的推导是难点。
③对等差数列、等比数列的综合研究离不开通项公式,因而通项公式的灵活运用既是重点又是难点。
教学建议
(1)建议本节课分两课时,一节课为等比数列的概念,一节课为等比数列通项公式的应用。
(2)等比数列概念的引入,可给出几个具体的例子,由学生概括这些数列的相同特征,从而得到等比数列的定义。也可将几个等差数列和几个等比数列混在一起给出,由学生将这些数列进行分类,有一种是按等差、等比来分的,由此对比地概括等比数列的定义。
(3)根据定义让学生分析等比数列的公比不为0,以及每一项均不为0的特性,加深对概念的理解。
(4)对比等差数列的表示法,由学生归纳等比数列的各种表示法。 启发学生用函数观点认识通项公式,由通项公式的结构特征画数列的图象。
(5)由于有了等差数列的研究经验,等比数列的研究完全可以放手让学生自己解决,教师只需把握课堂的节奏,作为一节课的组织者出现。
(6)可让学生相互出题,解题,讲题,充分发挥学生的主体作用。
等比数列教案 篇三
一。 教学内容:
等差、等比数列的综合应用
二、教学目标:
综合运用等差、等比数列的定义式、通项公式、性质及前n项求和公式解决相关问题。
三、要点:
(一)等差数列
1、 等差数列的前 项和公式1:
2、 等差数列的前 项和公式2:
3、 (m, n, p, q ∈N )
5、 对等差数列前n项和的最值问题有两种:
(1)利用 >0,d<0,前n项和有最大值,可由 ≤0,求得n的值。
当 ≤0,且 二次函数配方法求得最值时n的值。
(二)等比数列
1、等比数列的前n项和公式:
∴当 ① 或 ②
当q=1时, 时,用公式②
2、 是等比数列 不是等比数列
②当q≠-1或k为奇数时, 仍成等比数列
【模拟】
1、 已知等比数列的公比是2,且前四项的和为1,那么前八项的和为 ( )
A. 15 B. 17 C. 19 D. 21
2、 已知数列{an=3n-2,在数列{an}中取ak2,akn ,… 成等比数列,若k1=2,k2=6,则k4的值 ( )
A. 86 B. 54 C. 160 D. 256
3、 数列A. 750 B. 610 C. 510 D. 505
4、<0的最小的n值是 ( )
A. 5 B. 6 C. 7 D. 8
5、 若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,
则这个数列有 ( )
A. 13项 B. 12项 C. 11项 D. 10项
6、 数列 并且 。则数列的第100项为( )
A. C. 7. 在等差数列{ =-15,公差d=3,求数列{ 的元素个数,并求这些元素的和。
等比数列教案 篇四
一、概述
教材内容:等比数列的概念和通项公式的推导及简单应用
教材难点:灵活应用等比数列及通项公式解决一般问题
教材重点:等比数列的概念和通项公式
二、教学目标分析
1、 知识目标
掌握等比数列的定义 理解等比数列的通项公式及其推导
2.能力目标
(1)学会通过实例归纳概念
(2)通过学习等比数列的通项公式及其推导学会归纳假设
(3)提高数学建模的能力
3、情感目标:
(1)充分感受数列是反映现实生活的模型
(2)体会数学是来源于现实生活并应用于现实生活
(3)数学是丰富多彩的而不是枯燥无味的
三、教学对象及学习需要分析
1、 教学对象分析:
(1)高中生已经有一定的学习能力,对各方面的知识有一定的基础,理解能力较强。并掌握了函数及个别特殊函数的性质及图像,如指数函数。之前也刚学习了等差数列,在学习这一章节时可联系以前所学的进行引导教学。
(2)对归纳假设较弱,应加强这方面教学
2、学习需要分析:
四。 教学策略选择与设计
1、课前复习
(1)复习等差数列的概念及通向公式
(2)复习指数函数及其图像和性质
2.情景导入
等比数列教案 篇五
【教学目标】
知识目标:正确理解等比数列的定义,了解公比的概念,明确一个数列是等比数列的限定条件,能根据定义判断一个数列是等比数列,了解等比数列在生活中的应用。
能力目标:通过对等比数列概念的归纳,培养学生严密的思维习惯;通过对等比数列的研究,逐步培养学生观察、类比、归纳、猜想等思维能力并进一步培养学生善于思考,解决问题的能力。
情感目标:培养学生勇于探索、善于猜想的学习态度,实事求是的科学态度,调动学生的积极情感,主动参与学习,感受数学文化。
【教学重点】
等比数列定义的归纳及运用。
【教学难点】
正确理解等比数列的定义,根据定义判断或证明某些数列是否为等比数列
【教学手段】
多媒体辅助教学
【教学方法】
启发式和讨论式相结合,类比教学。
【课前准备】
制作多媒体课件,准备一张白纸,游标卡尺。
【教学过程】
复习回顾:等差数列的定义。
创设问题情境,三个实例激发学生学习兴趣。
1. 利用游标卡尺测量一张纸的厚度。得数列a,2a,4a,8a,16a,32a.(a>0)
2. 一辆汽车的售价约15万元,年折旧率约为10%,计算该车5年后的价值。得到数列 15 ,15×0.9 ,15×0.92 ,15×0.93 ,…,15×0.95。
3. 复利存款问题,月利率5%,计算10000元存入银行1年后的本利和。得到数列10000×1.05,10000×1.052,…,10000×1.0512.
学生探究三个数列的共同点,引出等比数列的定义。
【新课讲授】
由学生根据共同点及等差数列定义,自己归纳等比数列的定义,再由老师分析定义中的关键词句,并启发学生自己发现等比数列各项的限制条件:等比数列各项均不为零,公比不为零。
等差数列:
一般地,如果一个数列从第二项起,每一项减去它的前一项所得的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用d表示。数学表达式: an+1-an=d
等比数列:
一般地,如果一个数列从第二项起,每一项与它的前一项的比都等于同一个常数,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比,通常用q表示。数学表达式: an?1
an?q
知晓定义的基础上,带领学生看书p29页,书上前面出现的关于等比数列的实
例。让学生了解等比数列在实际生活中的应用很广泛,要认真学好。
在学生对等比数列的定义有了初步了解的基础上,讲解例一。给出具体的数列,会利用定义判断是否为等比数列。对(1)(5)两小题着重分析。
等比数列教案 篇六
教学目标
熟悉与数列知识相关的背景,如增长率、存款利息等问题,提高学生阅读理解能力、抽象转化的能力以及解答实际问题的能力,强化应用仪式。
教学重难点
熟悉与数列知识相关的背景,如增长率、存款利息等问题,提高学生阅读理解能力、抽象转化的能力以及解答实际问题的能力,强化应用仪式。
教学过程
【复习要求】熟悉与数列知识相关的背景,如增长率、存款利息等问题,提高学生阅读理解能力、抽象转化的能力以及解答实际问题的能力,强化应用仪式。
【方法规律】应用数列知识界实际应用问题的关键是通过对实际问题的综合分析,确定其数学模型是等差数列,还是等比数列,并确定其首项,公差或公比等基本元素,然后设计合理的计算方案,即数学建模是解答数列应用题的关键。
一、基础训练
1、某种细菌在培养过程中,每20分钟x一次一个x为两个,经过3小时,这种细菌由1个可繁殖成
A、511B、512C、1023D、1024
2、若一工厂的生产总值的月平均增长率为p,则年平均增长率为
A、B、
C、D、
二、典型例题
例1:某人每期期初到银行存入一定金额A,每期利率为p,到第n期共有本金nA,第一期的利息是nAp,第二期的利息是n—1Ap……,第n期即最后一期的利息是Ap,问到第n期期末的本金和是多少?
评析:此例来自一种常见的存款叫做零存整取。存款的方式为每月的某日存入一定的金额,这是零存,一定时期到期,可以提出全部本金及利息,这是整取。计算本利和就是本例所用的有穷等差数列求和的方法。用实际问题列出就是:本利和=每期存入的金额[存期+1/2存期存期+1利率]
例2:某人从1999到20xx年间,每年6月1日都到银行存入m元的一年定期储蓄,若每年利率q保持不变,且每年到期的存款本息均自动转为新的一年定期,到20xx年6月1日,此人到银行不再存款,而是将所有存款的本息全部取回,则取回的金额是多少元?
例3、某地区位于沙漠边缘,人与自然进行长期顽强的斗争,到1999年底全地区的绿化率已达到30%,从2000年开始,每年将出现以下的变化:原有沙漠面积的16%将栽上树,改造为绿洲,同时,原有绿洲面积的4%又被侵蚀,变为沙漠。问经过多少年的努力才能使全县的绿洲面积超过60%。lg2=0.3
例4、流行性感冒简称流感是由流感病毒引起的急性呼吸道传染病。某市去年11月分曾发生流感,据资料记载,11月1日,该市新的流感病毒感染者有20人,以后,每天的新感染者平均比前一天的新感染者增加50人,由于该市医疗部门采取措施,使该种病毒的传播得到控制,从某天起,每天的新感染者平均比前一天的新感染着减少30人,到11月30日止,该市在这30天内感染该病毒的患者共有8670人,问11月几日,该市感染此病毒的新的患者人数最多?并求这一天的新患者人数。
等比数列教案 篇七
教学目标
1、通过教学使学生理解等比数列的概念,推导并掌握通项公式。
2、使学生进一步体会类比、归纳的思想,培养学生的观察、概括能力。
3、培养学生勤于思考,实事求是的精神,及严谨的科学态度。
教学重点,难点
重点、难点是等比数列的定义的归纳及通项公式的推导。
教学用具
投影仪,多媒体软件,电脑。
教学方法
讨论、谈话法。
教学过程
一、提出问题
给出以下几组数列,将它们分类,说出分类标准。(幻灯片)
①-2,1,4,7,10,13,16,19,
②8,16,32,64,128,256,
③1,1,1,1,1,1,1,
④
-
243,81,27,9,3,1,
,
,
⑤31,29,27,25,23,21,19,
⑥1,-1,1,-1,1,-1,1,-1,
⑦1,-10,100,-1000,10000,-100000,
⑧0,0,0,0,0,0,0,
由学生发表意见(可能按项与项之间的关系分为递增数列、递减数列、常数数列、摆动数列,也可能分为等差、等比两类),统一一种分法,其中②③④⑥⑦为有共同性质的一类数列(学生看不出③的情况也无妨,得出定义后再考察③是否为等比数列)。
二、讲解新课请学生说出数列②③④⑥⑦的共同特性,教师指出实际生活中也有许多类似的例子,如变形虫分裂问题假设每经过一个单位时间每个变形虫都分裂为两个变形虫,再假设开始有一个变形虫,经过一个单位时间它分裂为两个变形虫,经过两个单位时间就有了四个变形虫,,一直进行下去,记录下每个单位时间的变形虫个数得到了一列数。
这个数列也具有前面的几个数列的共同特性,这是我们将要研究的另一类数列等比数列。 (这里播放变形虫分裂的多媒体软件的第一步)
判断下列数列是否为等比数列?若是,找出公比;不是,请说明理由.
(1) 1, 4, 16, 32.
(2) 0, 2, 4, 6, 8.
(3) 1,-10,100,-1000,10000.
(4) 81, 27, 9, 3, 1.
(5) a, a, a, a, a.
讲解例二,进一步熟悉定义,根据定义求数列未知项。最后的小例一为了由利
用定义的求解转到利用定义证明,二为了让学生发现等比数列隔项同号的规律。 例题二
求出下列等比数列中的未知项:
(1) 2, a, 8;
(2) -4, b, c, ?;
? 已知数列 2, x, d, y,8.是等比数列
①证明数列2, d, 8.仍是等比数列.
②求未知项d.
通过两道例题的讲解,让学生有个缓冲,做个巩固练习。当然此练习的安排,
也是为了进一步挖掘等比数列定义的本质,辨析找寻等差数列与等比数列的关系,将具体问题再推广到一般,并要求学生理解并掌握等比数列的判断证明方法。
练习
判断下列数列是等差数列还是等比数列?
(1) 22 , 2 , 1 , 2-1, 2-2 。
(2) 3 , 34 , 37, 310 。
引申:已知数列{an}是等差数列,而bn?2n
证明数列{bn}是等比数列。
由最后一例的证明,说明给出通项公式后可由定义判断该数列是否为等比数
列。反过来若数列已经是等比数列了,能否由定义导出数列通项公式呢?为下节课做铺垫。
【课堂小结】
由学生通过一堂课的学习,做个简单的归纳小结。
1理解。等比数列的定义,判断或证明数列是否为等比数列要用定义判断
2、等比数列公比q≠0,任意一项都不为零。
3、学习等比数列可以对照等差数列类比做研究。
【作业】
1、书p48. No.1,2;
推荐访问:等比数列 教案 公开课 公开课等比数列教案7篇 等比数列教案 高中数学等比数列教案
热门文章:
- 党史教案小学(7篇)2024-10-18
- 幼儿园b的教案怎么写(8篇)2024-10-16
- 废物新用美术教案(7篇)2024-10-08
- 95式自动步卧姿射击教案(5篇)2024-09-20
- 高中体育与健康教案(6篇)2024-09-13
- 书面意见供设计单位参考为下一步设计(2篇)2024-08-30
- 设计保密条款(6篇)2024-08-25
- 废物新用美术教案(5篇)2024-08-22
- 小班防拐骗教案及反思(5篇)2024-08-21
- 大自然的声音教案(5篇)2024-08-19
相关文章:
- 2023年等比数列教案7篇2023-03-02
- 2023年度《等比数列前n项和》说课稿3篇(2023年)2023-06-09
- 2023年度八年级数学等比数列求和知识点2篇(全文)2023-08-03
- 幼儿园音乐教案教案7篇2023-02-10
- 2023幼儿园主题活动教案9篇(完整)2023-02-10
- 2023年中学综合实践活动教案五篇【优秀范文】2023-02-10
- 2023校园安全知识教育教案6篇2023-02-10
- 高中数学教案模板、教案格式及教案范本3篇(精选文档)2023-02-10
- 托班手工教案7篇(完整)2023-02-10
- 2023年幼儿园安全教案7篇(全文)2023-02-12
- 幼儿园大班语言教案9篇(范文推荐)2023-02-12
- 2023年小学二年级语文《雾在哪里》原文及教案9篇【精选推荐】2023-02-12
- 2023年度小学三年级语文《荷花》教案3篇【优秀范文】2023-02-12
- 2023年《葡萄沟》公开课教案设计及反思6篇2023-02-12
- 最新数学公开课评课主持稿(8篇)2023-06-06