昆博公文网
当前位置 首页 >专题范文 > 教案设计 >

比例尺教学设计教案7篇

发布时间:2023-06-27 17:40:03 来源:网友投稿

下面是小编为大家整理的比例尺教学设计教案7篇,供大家参考。

比例尺教学设计教案7篇

作为一名专为他人授业解惑的人民教师,就难以避免地要准备教学设计,借助教学设计可以让教学工作更加有效地进行。写教学设计需要注意哪些格式呢?下面是整理的7篇《比例尺教学设计教案》,希望能够给您提供一些帮助。

公开课《比例尺》教学设计 篇一

教学目的:

1、在实践活动中体验生活中需要的比例尺,能读懂两种形式的比例尺。

2、在操作、观察、思考、归纳等学习活动中理解比例尺的意义,正确计算比例尺,了解比例尺在实际生活中的各种用途。

教学重点:

理解比例尺的意义

教学难点:

把线段比例转换成数值比例尺

教学过程:

一、激发兴趣,引入比例尺

脑筋急转弯

师:坐公共汽车从沙市红星路到荆州火车站,一共要用50分钟,但有只蚂蚁从沙市红星路爬到荆州火车站却只用了40秒钟。你知道是怎么回事吗?

生猜:蚂蚁可能在地图上爬。

师:对了。蚂蚁爬的是从沙市红星路至荆州火车站的图上距离,而人们坐车所行的是从沙市红星路到荆州火车站的实际距离。

师:那图上距离与实际距离之间有什么关系呢?让我们先来做个游戏。

二、动手操作,认识比例尺

1、操作计算。

师:你们喜欢画画吗?那我们来个最简单的——画线段游戏。我说物品的长度,你用线段画出它的长,行吗?

①橡皮长5厘米

②圆规长11厘米

③米尺长1米

师:咦?怎么不画了?

生:画不下。

师:那怎么办呀?快想想,有什么好办法,可以把1米画到纸上去?

生:可以把1米缩小若干倍后画在纸上。

师:这个办法不错。就用这种方法画吧。

学生画完,集体交流。

师:你是用图上几厘米的线段来表示实际1米的呢?

教师有选择的板书:

师:像2厘米、5厘米、10厘米这些在图上画出的线段的长度,我们叫“图上距离”,而这1米就叫“实际距离”。

师:你能用比表示出图上距离与实际距离的关系吗?

教师指名回答,并板书计算过程。

2、揭示比例尺的意义。

(1)初步理解比例尺的意义

师:其实像这样一幅图的图上距离与实际距离的比,就叫这幅图的比例尺。这就是我们这节课所要学习的内容—比例尺(板书课题及关系式)根据比与分数的关系,我们还可以把它写成图上距离/实际距离=比例尺。(板书)

师:下面每位同学算出自己的比例尺。

(生独立计算后汇报结果,师板书)

师:同样是1米的米尺的线段图,为什么它的比例尺却不一样呢?(缩小的倍数不同)

师:同学们,你们还记得我们上课前所说的最后一道脑筋转弯的题目吗?原来坐车是从沙市红星路到荆州的火车站实际距离约是18千米,而蚂蚁行的是30厘米的图上距离,怪不得只要3秒呢!那么,你能求出这副地图的比例尺吗?

(学生做前先交流)

师:大家交流一下,谁能告诉大家首先要做什么事情?

师:先写出图上距离与实际距离的比,再把千米化成厘米,也就是说我们在求比例尺的时候,首先写出比,再把单位统一起来,最后化简比。(板书1. 写出比。2. 单位统一。3. www..com 化简比)

学生汇报计算结果

让能说说求一幅图的比例尺的方法是怎样的?

对应练习:

完成课本第49页“做一做”

(2)联系生活,进一步理解比例尺

师:你还在哪里见过比例尺?

生1:大型建筑。

生2:房屋装修。

师:根据这幅图的比例尺,你能用另一种说法说出图上距离和实际距离的关系吗?

(让学生说出图上距离是实际距离的几分之几?实际距离是图上距离的几倍?)

三、认真比较,深刻理解

1、比较比例尺,揭示数值比例尺的意义。

师:像1:1000000这样的比例尺是数值比例尺。它也可以写成1/1000000你。能说说比例尺1:100000000所表示的意思吗?

生:距离是实际距离的一百万分之一,实际距离是图上距离的一百万倍。

师: 你还见过怎样的比例尺?(出示中国地图)引出线段比例尺。

2、认识线段比例尺。

师:把上面的线段比例尺改写成数值比例尺。

1厘米:60千米

=1厘米:6000000厘米

=1:6000000

小结:

线段比例尺和数值比例尺是比例尺的两种基本形式。它们之间可以进行转换。把线段比例尺转换成数值比例尺只要把写出图上距离与实际距离的比再化简就可以了。

3、认识把实际距离放大后的比例尺

同学们,刚才我们把米尺的实际距离缩小若干倍后画在纸上,我们还求出了它的比例尺是1:100等,在实际生活中有没有要把实际距离放大后再画在图上的呢(有)

(出示三年级科学书中蚂蚁图)

师:这是同学们三年级科学书中蚂蚁图,他是把蚂蚁放大后画在书上,图上蚂蚁长6厘米,而蚂蚁实际长6毫米。你能算出这幅图的比例尺吗?

(学生尝试算出这幅图的比例尺,指名板演)

出示一些精密零件的图和图纸,介绍把实际距离放大后的比例尺。

纵观这节课所认识的比例尺,思考下列问题:

1、比例尺与一般的尺相同吗?化简后的比例尺带不带单位?

2、求比例尺时,通常要做什么?

3、化简后的比例尺,它的前项和后项一般是什么形式?

四、巩固练习,灵活运用

1、小结看书。

2、练习:

(一)填一填

(1)在比例尺是1:2000的地图上,图上距离1厘米表示实际距离( )

(2)在比例尺是1:4000000的地图上,图上距离是实际距离的( ),实际距离是图上距离的( )倍。

(3)出示一个线段比例尺表示图上1厘米相当于实际距离( )米,把这个比例尺改写成数值比例尺是( )。

(二)判断

(1)小华在绘制学校操场平面图时,用20厘米的线段表示地面上40米的距离,这幅图的比例尺为1︰2。

(2)某机器零件设计图纸所用的比例尺为1︰1,说明了该零件的实际长度与图上是一样的。

(3)一幅图的比例尺是6︰1,这幅图所表示的实际距离大于图上距离 。

六、谈学后体会

这节课你学到了什么?

公开课《比例尺》教学设计 篇二

一、教材分析

《比例尺》这节课是在学生学习了比和比例的基础上进行学习的,它是比和比例知识的延伸和应用,比例尺不是一把真正意义上的尺子,却是一个日常生活中极其重要的工具。在现实生活中有着广泛的应用,因此,对比例尺的学习具有很现实的意义。

二、学情分析

本课内容是《义务教育课程标准实验教科书。数学》六年级第十二册第

48、49页。是在学生学习了比和比例有关知识的基础上学习的,学生对于常见的平面图和地图并不陌生,但对“比例尺”这个概念可能会有些生疏和抽象,课堂上将紧密借助学生已有的知识和经验引导学生,主动建构知识,让学生充分动手操作,动脑思考,经历“比例尺”知识的形成过程。

三、目标与要点分析教学目标:

(1)在具体情境中理解比例尺的意义,并能根据比例尺的意义求一幅图的比例尺。

(2)能够根据比例尺知识求实际距离。

(3)培养学生综合运用知识的能力;培养学生动手测量和画图的能力。

过程与方法:通过学生的自主探究、合作交流,培养学生的探究意识、合作意识、创新意识。

情感、态度与价值观:使学生感受数学与生活的联系,体验学习数学的价值,增强学好数学的情感。

本节课的重点是理解比例尺的意义。难点是把线段比例尺改写成数值比例尺。

为了抓住重点,突破难点,本节课将提供较大的探索空间和众多的动手操作时机,让学生充分动手动脑,主动建构知识,而不是硬生生地把知识强塞给学生。

四、教学策略设计

比例尺是人们约定俗成地表示图上距离与实际距离的关系。以往我们执教传统教材,是直接给出图上距离和实际距离,然后让学生求图上距离与实际距离的比,要求化成单位相同再写比,这样的比就是比例尺。表面上看学生似乎已经知道了比例尺,但是比例尺为什么应运而生?学生只是被动接受知识。如何让学生经历比例尺的产生过程,教材创设了设计足球场平面图的情境,让学生在设计过程中体验到比例尺产生的必要性——绘制平面图时需要把实际距离缩小一定的倍数,既体现了新理念,又让学生有了更多自我体验和感悟的时间与空间。

有了以上的思考,就有了我第一次设计尝试,遗憾的是学生面对一个长8米,宽6米的教室,没有意识到在纸上长要画多长,宽要画多长,按多少“比”在来画。从学生完成的作品来看,有3人用1∶1000来画的,有13人画出长的比是1∶500,宽的比是1∶300,两个比不同,导致学生画出的形状与原来足球场的形状不同。大部分学生画出了任意长和任意宽,组成一个长方形,标上实际距离。这种情况是不是学生缺乏一种体验,一种按倍数缩小并缩小相同倍数的体验,因此学生不能自动生成。以上的教学实践引起了我的反思,重新尝试第二次设计,收到了较好的效果。

教师准备:一幅李成俊同学的照片

五、教学过程设计

(一)、生活原型再现:

师:(出示李成俊同学的照片)你们认识他吗?他是谁?生:李成俊

师:怎么可能呢?照片上的人这么小,怎么会是他呢?生:是缩小了??

师:如果李成俊的眼睛不缩小,鼻子和嘴巴缩小了,那会怎么样?生:不像他了,像丑八怪??师:那怎样才能像他呢?生:都要缩小。

师:一起缩小,是吧。如果他的眼睛缩小100倍,鼻子和嘴巴缩小10倍,像他吗?生:不像,要缩小相同的倍数。??

(二)、创设情境,以疑激思

同学们,昨天我们测量了教室的长是8米宽是6米,现在老师提议大家以小组为单位,当一回绘画师,画出教室的平面图。再动手之前,先思考这两个问题:

1、要把教室的平面图画在纸上,你有这么的的纸吗?你怎么办?

2、随便在纸上画一个长方形,这一定是教室的平面图吗?

(三)、独立探究,合作交流。

(1)通过学生讨论,引出学习要求:A、你是怎样确定图上的长和宽的长度;

B、图上的长和实际的长的比是多少,并化简;

C、写上图上的宽和实际的宽的比,并化简;

根据要求个人作图,完成后四人小组交流(重点交流你是怎么确定图上的长和宽的)选择你们组认为最好的,贴在黑板上。(2)学生小组学习(3)学生汇报设计思路

生1:我是把实际的长和宽都缩小1000倍,图上的长就是8厘米,宽就是6厘米,这样的长方形图就是足球场的平面图。

(根据学生的汇报板书)图上距离:实际距离

8厘米:8米=8:800=1:1006厘米:60米=6:6000=1:1004厘米:8米=4:800=1:2003厘米:6米=3:600=1:200揭示比例尺的意义:图上距离和实际距离的比,叫做这幅图的比例尺。

图上距离:实际距离=比例尺

师:1:200的比例尺,说说你是怎样理解的?

生:表示图上距离是实际距离的1/200;

表示实际距离是图上距离的200倍;图上距离和实际距离的比是1:200;图上1厘米表示实际距离2米;

(四)、数值比例尺和线段比例尺的认识

1、示中国地图。

师:比例尺1:10000000表示什么实际意义?

生:图上距离1厘米是实际距离的1000000000厘米。

2、示北京市的地图。

师:观察这幅地图的比例尺有什么不同?表示什么实际意义?生:这是一幅线段比例尺,表示图上1厘米表示实际50千米。

3、学生读教科书。

师:书中这两种比例尺分别叫什么?它们有什么不同?

生1:前面的一种叫数值比例尺,后一种叫线段比例尺。数值比例尺没有单位。生2:实际距离都比图上距离大。

师:是不是所有的比例尺都是实际距离比图上距离大呢?请同学们看书第49页后,回答并说为什么?

生:不是。因为有的机器零件很小,需要把实际长度按一定的比扩大后,再画在图纸上,这就出现了图上距离比实际距离大的比例尺。师:图中的2:1表示什么?

生:图中的2:1表示图上距离是实际距离的2倍。

师:请同学们观察这些比,你有什么发现?生:这些比的前项和后项都是1.小结:为了计算,通常把比例尺写成前项或后项师1的比。

4、教学例1.师:我们能不能把它(手指上面的线段比例尺)改成数值比例尺呢?指名学生板书:图上距离:实际距离1厘米:50千米

=1厘米:5000000厘米

=1:5000000师:做这类题,因该注意什么?

生:统一单位,比例尺不带单位名称,一定是图上距离除以实际距离。

(五)加深理解,拓展应用

1、判断题:

①小华在绘制学校操场平面图时,用20厘米的线段表示地面上40米的距离,这幅图的比例尺为1︰2。

②某机器零件设计图纸所用的比例尺为1︰1,说明了该零件的实际长度与图上是一样的。

③一幅图的比例尺是6︰1,这幅图所表示的实际距离大于图上距离

2、解决生活中的问题:

一栋楼房东西方向长40m,在图纸上的长度是50cm.这幅图纸的比例尺是多少?

3、拓展应用:

我们学校操场的长是200米,宽是100米。同学们,你们能自己确定比例尺,把操场的平面图画下来吗?

板书设计比例尺图上距离:实际距离=比例尺

图上距离=比例尺

实际距离

8厘米:8米=8:800=1:1006厘米:6米=6:600=1:1004厘米:8米=4:400=1:2003厘米:6米=3:600=1:200

教学实施

本节课在两个方面进行了创新设计:

一是情境导入,由于第一次设计时,让学生一进课堂就设计一个教室的平面图,学生们不知道平面图要按照一定的倍数缩小,而且要缩小相同的倍数,缺少这种经验和体验,出现了任意画的情况。因此,二度设计时我选择了生活原型——从照片引入,学生对这种生活常识应该说不陌生,为画平面图做好了很好的铺垫。

二是结合教室实际的长和宽和图上的长和宽,使学生初步确定什么是图上距离和实际距离,在动手画图时,对如何确定图上的长和宽就是要将实际的长和宽缩小一定的倍数,也就是确定图上距离和相对应的实际距离的比,并引出比例尺的意义,再结合两幅地图的比例尺介绍线段比例尺和数值比例尺,又通过一个机器零件的放大的图纸,让学生认识把实际距离放大的比例尺如何表示。最后说明为了计算方便,通常把比例尺改写成数值比例尺。

六、教学反思

上完课,我有一种意犹未尽的感觉,经历了实践与理论的深思与探索,对新课标有了更深入的理解。

1、在学生已有的经验上学习数学

新课标指出:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。只有在学生的生活经验的基础上进行教学,学生才感到亲切,学得主动。通过课前展示学生的照片,学生对照片上的人是按倍数缩小了这种生活常识有了深刻的体验,再让学生来画教室的平面图,可以说是水到渠成的。

2、让学生经历了知识的形成过程

只有体验过,理解才会深刻。让学生在画教室平面图的交流互动中,体验探究比例尺的产生过程,理解比例尺产生的必要性。同时在探究过程中,学生对比例尺的意义理解是多方位的,个性化的。有了学生个性化的体验,才有了后面解决问题的个性化的表达。

3、让学生密切联系了生活实际

数学来源与生活,又应用于生活实际。本节课从让学生设计教室平面图,到让学生把线段比例尺改成数值比例尺,“生活中处处有数学“的理念贯穿了整个教学的始终,使学生真切地感受到学习数学的价值。

教学过程: 篇三

一、问题的情景:

1、 出示邮票。问:你能同样大小的把它画在图纸上吗?

让同学们画一画,再拿出邮票的长,比一比,怎么样?

归纳:(同样长)得:图上的长和实际的长的比是1:1。

2、 教室的长是9米,你能同样长的画在图纸上吗?更大一些呢?

如果操场的长,整个中华人民共和国,能完全一样画在平面图上吗?(不能),想个什么方法(窍门)可画上去了?

3、 让生猜想:(出示学校平面图)图上操场的长和实际长的比,还会是1:1吗?大约是几比几?

4、 导入新课:人们在绘制地图和平面图时,往往因为纸的大小有限,不可能按实际的"大小画在图纸上,经常需要把实际距离缩小一定的倍数以后再画成图。象手表等机器零件比较小,又得把实际长度扩大一定的倍数以后,才能画到图纸上去。这就。需要涉及到一种新的知识。也就是今天我们一起来研究比例尺的问题。

板书:比例尺

二、问题解决:

5、 一个教室长是9米,如果我们要画这个教室的平面图,为了看图和携带方便,就需要把实际距离缩小一定的倍数后画在平面图上,缩小多少倍由你自己决定,你打算设计:用几厘米表示9米。请四人小组讨论并设计。

6、 小组回报设计方案,教师选择以下四种方案。

(1)。用9厘米表示9米

(2)。用4.5厘米表示9米

(3)。用3厘米表示9米

(4)。用1厘米表示9米

7、 说说以上方案是图上距离比实际距离缩小了多少倍?

算一算,每幅图 图上距离和实际距离的比。

(1)。9厘米9米=9900=1100

(2)。4.5厘米9米=4.5900=1200

(3)。3厘米9米=3900=1300

(4)。1厘米9米=1900

8、 这四个比的前项代表什么?(图上距离),后项代表什么?(实际距离),我们把这样的比,叫比例尺。

齐读:比例尺是图上距离与实际距离的比,化简后得到最简整数比。

比例尺怎样求:(看上述四个比例式得出):

图上距离实际距离=比例尺 或 图上距离

实际距离

9、 讨论汇报:上面四幅图,比例尺是多少图最大?

比例尺是多少图再小?为什么?

10、 练习:

(1)。甲、乙两座城市相距120千米,在地图上量得两城市的距离是4厘米。求这幅地图的比例尺。

(2)。学校里修建运动场,在设计图上用25厘米长线段来表示操场的实际长度150米。求图上距离和实际距离的比。

(3)。一张中国图,图上4厘米表示实际距离1040千米,求这幅地图的比例尺?

(4)。一张紧密图纸中,图上1厘米表示实际1毫米,求这幅精密图纸的比例尺?

(观察精密零件如果要画在图纸上,怎么办?(放大)。那这幅精密图纸的比例尺会求吗?

上述四题分层练习,后讲评。

11、 比较(3)、(4)两题的比例尺有什么不同?

教师小结:一般把缩小图的比例尺写成前项是1的比,而把放大图的比例尺写成后项是1的长。

12、 比例尺有多少种表示方法?让生说一说

(常见的有:比的形式 分数的形式 线段形式)

三、问题的应用:

根据比例尺的关系式,求实际距离。

(1)。出示例2 在比例尺是130000000的地图上,量得上海到北京的距离是3.5厘米。上海到北京的实际距离大约是多少千米?

(学生独立解答,同时抽一生板演)

解:设上海到北京的实际距离为x厘米,

x=105000000

105000000厘米=1050千米。

答:上海到北京的实际距离大约是1050千米。

(2)。分析讲述:

根据比例尺的计算公式,已知图上距离和比例尺求实际距离,用方程解。

(先设x,再根据比例尺的计算公式列出方程。)

(3)。图上距离和实际距离的单位要统一,一般都统一为低级单位厘米。

(4)怎样设x,。教师指出:设未知数时,单位要与已知单位统一,后再化聚到问题单位。

(5)尝。试练习第57页试一试。

河西村到汽车站的实际距离是20千米,图上距离是5厘米,算出这幅地图的比例尺。汽车站到县城的图上距离是15厘米,实际距离是多少千米?

比例尺教学设计 篇四

教学内容:

人教版小学数学实验教材第十二册《比例尺》第48、49页的内容。

教学目的:

1。在实践活动中体验生活中需要的比例尺,能读懂两种形式的比例尺。

2。在操作、观察、思考、归纳等学习活动中理解比例尺的意义,正确计算比例尺,了解比例尺在实际生活中的各种用途。

教学重点:

理解比例尺的意义

教学难点:

把线段比例转换成数值比例尺

教学过程:

一、激发兴趣,引入比例尺

脑筋急转弯

师:坐公共汽车从沙市红星路到荆州火车站,一共要用50分钟,但有只蚂蚁从沙市红星路爬到荆州火车站却只用了40秒钟。你知道是怎么回事吗?

生猜:蚂蚁可能在地图上爬。

师:对了。蚂蚁爬的是从沙市红星路至荆州火车站的图上距离,而人们坐车所行的是从沙市红星路到荆州火车站的实际距离。

师:那图上距离与实际距离之间有什么关系呢?让我们先来做个游戏。

二、动手操作,认识比例尺

1、操作计算。

师:你们喜欢画画吗?那我们来个最简单的——画线段游戏。我说物品的长度,你用线段画出它的长,行吗?

①橡皮长5厘米

②圆规长11厘米

③米尺长1米

师:咦?怎么不画了?

生:画不下。

师:那怎么办呀?快想想,有什么好办法,可以把1米画到纸上去?

生:可以把1米缩小若干倍后画在纸上。

师:这个办法不错。就用这种方法画吧。

学生画完,集体交流。

师:你是用图上几厘米的线段来表示实际1米的呢?

教师有选择的板书:

师:像2厘米、5厘米、10厘米这些在图上画出的线段的长度,我们叫“图上距离”,而这1米就叫“实际距离”。

师:你能用比表示出图上距离与实际距离的关系吗?

教师指名回答,并板书计算过程。

2、揭示比例尺的意义。

(1)初步理解比例尺的意义

师:其实像这样一幅图的图上距离与实际距离的比,就叫这幅图的比例尺。这就是我们这节课所要学习的内容—比例尺(板书课题及关系式)根据比与分数的关系,我们还可以把它写成图上距离/实际距离=比例尺。(板书)

师:下面每位同学算出自己的比例尺。

(生独立计算后汇报结果,师板书)

师:同样是1米的米尺的线段图,为什么它的比例尺却不一样呢?(缩小的倍数不同)

师:同学们,你们还记得我们上课前所说的最后一道脑筋转弯的题目吗?原来坐车是从沙市红星路到荆州的火车站实际距离约是18千米,而蚂蚁行的是30厘米的图上距离,怪不得只要3秒呢!那么,你能求出这副地图的比例尺吗?

(学生做前先交流)

师:大家交流一下,谁能告诉大家首先要做什么事情?

师:先写出图上距离与实际距离的比,再把千米化成厘米,也就是说我们在求比例尺的时候,首先写出比,再把单位统一起来,最后化简比。

学生汇报计算结果

让能说说求一幅图的比例尺的方法是怎样的?

对应练习:

完成课本第49页“做一做”

(2)联系生活,进一步理解比例尺

师:你还在哪里见过比例尺?

生1:大型建筑。

生2:房屋装修。

师:根据这幅图的比例尺,你能用另一种说法说出图上距离和实际距离的关系吗?

(让学生说出图上距离是实际距离的几分之几?实际距离是图上距离的几倍?)

三、认真比较,深刻理解

1、比较比例尺,揭示数值比例尺的意义。

师:像1:1000000这样的比例尺是数值比例尺。它也可以写成1/1000000你。能说说比例尺1:100000000所表示的意思吗?

生:距离是实际距离的一百万分之一,实际距离是图上距离的一百万倍。

师: 你还见过怎样的比例尺?(出示中国地图)引出线段比例尺。

2、认识线段比例尺。

师:把上面的线段比例尺改写成数值比例尺。

1厘米:60千米

=1厘米:6000000厘米

=1:6000000

小结:线段比例尺和数值比例尺是比例尺的两种基本形式。它们之间可以进行转换。把线段比例尺转换成数值比例尺只要把写出图上距离与实际距离的比再化简就可以了。

3、认识把实际距离放大后的比例尺

同学们,刚才我们把米尺的实际距离缩小若干倍后画在纸上,我们还求出了它的比例尺是1:100等,在实际生活中有没有要把实际距离放大后再画在图上的呢(有)

(出示三年级科学书中蚂蚁图)

师:这是同学们三年级科学书中蚂蚁图,他是把蚂蚁放大后画在书上,图上蚂蚁长6厘米,而蚂蚁实际长6毫米。你能算出这幅图的比例尺吗?

(学生尝试算出这幅图的比例尺,指名板演)

出示一些精密零件的图和图纸,介绍把实际距离放大后的比例尺。

纵观这节课所认识的比例尺,思考下列问题:

1、比例尺与一般的尺相同吗?化简后的比例尺带不带单位?

2、求比例尺时,通常要做什么?

3、化简后的比例尺,它的前项和后项一般是什么形式?

四、巩固练习,灵活运用

1、小结看书。

2、练习:

(一)填一填

(1)在比例尺是1:2000的地图上,图上距离1厘米表示实际距离( )

(2)在比例尺是1:4000000的地图上,图上距离是实际距离的( ),实际距离是图上距离的( )倍。

(3)出示一个线段比例尺表示图上1厘米相当于实际距离( )米,把这个比例尺改写成数值比例尺是(   )。

(二)判断

(1)小华在绘制学校操场平面图时,用20厘米的线段表示地面上40米的距离,这幅图的比例尺为1︰2。

(2)某机器零件设计图纸所用的比例尺为1︰1,说明了该零件的实际长度与图上是一样的。

(3)一幅图的比例尺是6︰1,这幅图所表示的实际距离大于图上距离 。

六、谈学后体会。

这节课你学到了什么?

公开课《比例尺》教学设计 篇五

教学目标:

1、让同学在实践活动中体验生活中需要比例尺。

2、通过观察、操作与交流,体会比例尺实际意义,了解比例尺的含义。

3、运用比例尺的有关知识,学会解决生活中的一些实际问题。

4、同学在自主探索,合作交流中,逐步形成分析问题、解决问题的能力和创新的意识,体验数学与生活的联系,培养同学用数学眼光观察生活的习惯。 教学重点:正确理解比例尺的含义。

教学难点:运用比例尺的有关知识,学会解决生活中的一些实际问题。

一、激疑诱趣,引入新知:

很多同学都喜欢脑筋急转弯,现在老师给同学们一道脑筋急转弯的题目,让同学们猜猜:坐车从和平县县城到广州市,一共要用4小时,但有只蚂蚁从和平县县城爬到广州市却只用了5秒钟。你知道是怎么回事吗?(蚂蚁可能在地图上爬。)对了。蚂蚁爬的是从和平县县城到广州市的图上距离,而人们坐车所行的是从和平县县城到广州市的实际距离。那图上距离与实际距离之间有什么关系呢?

二、动手操作,认识比例尺:

1、操作计算。

(1)画线段。

让我们先来做个最简单的游戏——画线段游戏。我说物品的长度,你用线段画出它的长,行吗?

①橡皮长5厘米 ②铅笔长18厘米 ③米尺长1米

咦?怎么不画了?(画不下。)那怎么办呀?快想想,有什么好办法,可以把1米画到纸上去?(可以把1米缩小若干倍后画在纸上。)这个办法不错。就用这种方法画吧。

(重点:体会比例尺的实际意义,因为需要所以产生。)

(2)学生画完,集体交流。

你是用图上几厘米的线段来表示实际1米的呢?像2厘米、5厘米、10厘

米这些在图上画出的线段的长度,我们叫“图上距离”,而这1米就叫“实际距离”。你能用比表示出图上距离与实际距离的关系吗?(2厘米:1米、??)

教师指名回答,并板书计算过程。

2、揭示比例尺的意义

其实像这样一幅图的图上距离与实际距离的比,就叫这幅图的比例尺。这就是我们这节课所要学习的内容—比例尺(板书课题及关系式)根据比与分数的关系,我们还可以把它写成图上距离(板书) ?比例尺。实际距离

板书2厘米?5厘米?10厘米1米 一幅图的图上距离与实际距离的比?叫做这幅图的比例尺

同样是1米的米尺的线段图,为什么它的比例尺却不一样呢?(缩小的倍数不同)

三、探讨比例尺的计算方法

同学们,你们还记得我们上课前所说的一道脑筋急转弯的题目吗?原来坐车是从和平县县城到广州市实际距离约是300千米,而蚂蚁行的是5厘米的图上距离,怪不得只要5秒呢!那么,你能求出这副地图的比例尺吗?(学生做前先交流)

小黑板出示:从和平县县城到广州市实际距离约是300千米,在一副地图上只画了5厘米,这幅图的比例尺是多少?

大家交流一下,谁能告诉大家首先要做什么事情?(先写出图上距离与实际距离的比,再把千米化成厘米,也就是说我们在求比例尺的时候,首先要把单位统一起来。)

学生汇报计算结果。

四、应用比例尺知识解决问题

1)和平县政府距我校直线距离约200米,可在和平县城的地图上只画了2厘米,这幅图的比例尺是多少?

评讲:你是如何算得?结果是多少?(1﹕10000)要注意些什么?

从1﹕10000这一比例尺上,你能获取那些信息?(图上距离是实际距离的万分之一;实际距离是图上距离的一万倍;图上距离1厘米表示实际距离10000厘米等等)

2)填空并判别哪个是比例尺。

把一个长2米,宽1米的长方形画在图纸上,长画了10厘米,宽画了5厘米。

(1)图上的长和实际长的最简比为(1∶20)。

(2)图上宽和实际宽的最简比为(1∶20)。

(3)图上周长和实际周长的最简比为(1∶20)。

问:这幅图的比例尺是多少?

(4)图上面积和实际面积的最简比为(1∶400)。

预设:学生可能填1:20,引导交流为什么错,计算纠正。

追问:那这1:400是这幅图的比例尺吗?为什么?你发现了面积的比和比例尺有什么关系?

学生独立计算、回答。

强调:比例尺是图上距离:实际距离,不是图上面积:实际面积,这幅图的比例尺是多少?

五、介绍线段比例尺:

像前面这些比例尺是用数值来表示图上距离和实际距离关系的比例尺,我们把它们叫做数值比例尺(板书),而像这样的比例尺,是用线段来表示图上距离和实际距离关系,我们把这样的比例尺叫线段比例尺(板书)你能把它改成数值比例尺吗?

六、拓展延伸:认识精密比例尺

画一个物品,如果用1:10 (缩小了)1:1(相同) 2:1(放大了) 画的图和实际的图比较结果怎样?(设计意图:让学生抓住1:1000、1:10、1:1、2:1??。进一步认识比例尺有大有小,让学生打开思路,不拘一格的从多角度来思考比例尺的意义。结合实际培养学生用数学的眼光观察生活。)

在实际的生活中有没有要用到这种放大比例尺的情况呢?你能猜出工程师是如何把直径5毫米的机器零件画在图纸上的吗?

七、讨论:

1)比例尺与一般的尺相同吗?化简后的比例尺带不带单位?

2)求比例尺时,通常要做什么?

3)化简后的比例尺,它的前项和后项一般是什么形式?

八、 巩固练习

1、直径5毫米的机器零件,画在图纸上的直径是10厘米。它的比例尺是多少?

2、判断下面的说法是否正确:

下面是小聪学习了比例尺后写的一段数学日记:

今天我们学习了比例尺,我知道了图上距离比实际距离就等于比例尺。老师叫我们找找比例尺的例子。我想:这岂不是小儿科吗。你瞧,我一口气就能说出几个来:图上长和实际长的比是1:100;图上长和宽的比是1:5;图上宽和实际宽的比是1:2分米;实际距离和图上距离的比是20:1.哈哈,原来比例尺就是这么简单!

九、自我反思,总结评价

这节课你有收获吗?有什么收获呢?我们学会了比例尺的概念,比例尺的关系式、书写形式、比例尺的种类及转换、求比例尺的方法等,谁能来说一下?

同学们的收获的确很大,这节课同学们的表现都很出色,谢谢大家!

十、课堂作业

(一)填一填

1、图上距离与实际距离的比叫做( )。比例尺=():( )

2、比例尺分为两种,一种是(),另一种是( )

3、为了计算简便,通常把比例尺写成()的比

4、一幅图上用10厘米表示实际距离200千米,这幅图的比例尺是( )

5、一幅地图的比例尺是1:20000,它表示实际距离是图上距离的( )倍,图上距离是实际距离的( );它还表示图上1厘米代表实际( )米

6、如上图1厘米表示实际距离( )千米,化为数值比例尺是( ),实际距离是图上距离的( )倍,图上距离是实际距离的( )

(二)判断

1、比例尺是一种测量的工具。( )

2、小华在绘制学校操场平面图时,用20厘米的线段表示地面上40米的距离,这幅图的比例尺为1︰2。()

3、某机器零件设计图纸所用的比例尺为1︰1,说明了该零件的实际长度与图上是一样的。 ( )

4、一幅图的比例尺是6︰1,这幅图所表示的实际距离大于图上距离 。()

5、一个小型零件长5毫米,画在图上5厘米。这幅图的比例尺为1:10 ( )

公开课《比例尺》教学设计 篇六

【教学内容】

北师大版数学六年级下册30页——比例尺

【教材分析】

教材从学生比较熟悉的房屋平面图入手,引导学生认识比例尺,初步感受比例尺在生活中的应用。出示平面图后,借助图形放缩的经验和其他学习经验,了解比例尺的含义。

【学情分析】

本节课内容是学生在学习了化简比的基础上学习的,因此不会感到陌生。但学生对比例尺的意义可能不好理解,这部分知识相对来说比较抽象,在具体计算上可能存在一定困难。

【教学目标】

1、结合具体情境,认识比例尺;能根据图上距离、实际距离、比例尺中的两个量求第三个量。

2、运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,学会解决生活中的一些实际问题。

3、能积极参与数学学习活动,进一步体会数学与日常生活的密切联系。

【教学重点】

结合具体情境理解比例尺的意义。

【教学难点】

应用比例尺的知识解决实际问题。

【教学准备】

多媒体课件,直尺,中国地图

【教学流程】

一、 谈话导入,激起兴趣

1、 如果要绘制我们教室的平面图,需要多大的纸?

如果要绘制中国地图呢?

(学生自由回答。得出结论。)

2、 聪明的人想出了一个办法,把物体实际的长度按一定比例缩小再画在图纸上,这就是我们这节课要研究的内容。

【设计意图:先抓住学生急于认知的心理,从生活中熟悉的事物出发,真切感受到在绘制平面图的时候,不可能按照实际的长度来操作,需要有一个科学的方法,从而引入本节课内容。】

二、创设情境,探究新知

活动一:(课件出示)

六一儿童节快要到了,学校要举办一个大型的篝火晚会,想让同学们设计一个舞台。在平面图上如果用10厘米表示地面上10米的距离,那么图上距离与实际距离的比是多少呢?

【设计意图:用学生喜欢的活动引起浓厚的兴趣,用亲身经验走近数学,探索其中的奥秘。】

(1)读懂题目中的信息。

(学生汇报已知条件和所求问题。)

(2)根据题目的要求,引导学生得出10厘米:10米,并用学生已有的学习经验化简比。

设计意图:利用已有的学习经验,学生自然会想到要化简这个比,必须要统一计量单位,这也是比例尺这个知识点重点强调的地方。】

(3)随学生汇报,板书提炼:图上距离:实际距离

10厘米:10米

10:1000

1:100

(4)揭示比例尺的含义。使学生理解图上距离与实际距离的比就是比例尺。

【设计意图:不把比例尺作为一个知识点让学生背诵,而是在情景中鼓励学生进行充分的思考与交流后得出结论。】

(5)讲授比例尺的另一种表示形式,即分数的形式。板书。

活动二:(课件出示)(投影仪展示)

师生共同搜集的生活中不同的比例尺,引导学生交流讨论,说说自己的发现。

(学生积极展开讨论与研究,各抒己见。)

教师归纳为三点。

① 比例尺是一个比,不带计量单位。

② 比例尺的前项和后项一定是同级单位。

③ 为了计算方便,比例尺通常都写做是前项为1的比。

【设计意图:多角度理解比例尺的含义,使学生对比例尺的意义、形式、求法有初步了解,为解决实际问题打好基础。】

活动三:(出示教材30页情境图)

(1) 理解比例尺1:100的意义,引导学生用自己的语言描述。

(2) 完成2、3题。

(学生独立思考后小组内交流自己的想法,然后全班交流方法。)

(3) 完成4、5题。

(引导学生理解题意,独立思考后进行交流。)

【设计意图:学生可以利用比的意义、比例尺的含义等知识和解决问题的经验来解决这些问题,放手学生有利于提高解决问题的能力。】

(4)引导学生进行总结归纳。已知图上距离、实际距离、比例尺中的两个量怎样求第三个量。

三、 拓展引申,巩固新知

出示一中国地图。

1、 找到自己的家乡。估一估家乡到北京的距离,求一求实际距离。

2、 放暑假时,你打算从------到-------去旅游,两地间的实际距离大约是------千米。

引导学生交流各自的想法。

【设计意图:本体具有开放性和挑战性,对学生的估算和计算能力都是一种考验。】

四、 运用所学,解决问题

1、 学了本节课,你有获得了哪些知识?

2、 怎样画我们教室的平面图呢?(长8米,宽6米)

引导学生交流自己的看法,自定比例尺,画出平面图。

【设计意图:回顾前面的问题,首尾呼应,为学生提供充分的自由发展空间,让他们倾听、协作、分享、交流。】

五、 布置作业,课后延伸

1、 搜集生活中后项为1的比例尺。

2、 比例尺除了可以用1:100、1/100这样的形式表示,你知道还可以怎样来表示吗?

【设计意图:作为知识的拓展,将旧教材中的扩大比例尺和缩小比例尺、数值比例尺和线段比例尺的知识点给学生,拓宽学生视野和知识面。】

公开课《比例尺》教学设计 篇七

教案背景:

本课是北师大版小学数学第十二册“正比例和反比例”这一单元的内容。它是在学生对比例的意义有了一定的建构基础以及掌握了比例的基本性质这样背景下进行探索学习的。学好这部分内容,使学生进一步巩固比例的意义和基本性质,能更好地理解地图。

教学课题:《反比例》

教材分析:

教材通过解决实际问题知识引出图上距离和实际距离的比就是比例尺。再通过练习巩固比例尺的相关知识,使学生能根据比例尺求出图上距离和实际距离。这部分内容有较强的实际应用价值,为学生架起一道数学学习和现实生活之间的桥梁,使他们充分感受到数学的现实意义,从而进一步激发学习兴趣,并为后续学习打下良好的基础。

教学目标:

知识与技能:

1、让学生在实践活动中体验生活中需要比例尺。

2通过观察、操作与交流,体会比例尺实际意义,了解比例尺的含义。 过程与方法:

3运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,学会解决生活中的一些实际问题。

情感、态度与价值观:

4学生在自主探索,合作交流中,逐步形成分析问题、解决问题的能力和创新的意识,体验数学与生活的联系,培养学生用数学眼光观察生活的习惯。

教学重点:正确理解比例尺的含义。

教学难点:运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,体会比例尺的实际意义,学会解决生活中的一些实际问题。 教学法

教法:情境导入,激发求知欲望。对于意义理解部分主要采用实例讲

解法。对于运用比例尺进行相关计算时,主要用引导发现、提示理解法。

学法:在老师的引导下,通过动手操作,大胆设想、自主探究的方法

进行学习,必要时进行合作交流。

教学课时:一课时

教学过程:

一、创设情境,提出问题:

老师为了考考大家,给同学们出个脑筋急转弯:一只蚂蚁不到20秒钟从西安爬到了北京,你知道为什么吗?

生思考回答:在地图上。

师:那么大的地方可以用一幅地图来体现出来,这里运用了什么知识? 生:图形的放缩。

师:同学们说得真好,如果要给我们的教室画一张平面图,它应该是

什么形状的?你会画吗?

生:长方形。

师:那我们来估一估它的长和宽吧

(生:长大约9米,宽大约6米 。 )

师:请大家在练习本上画出教室的平面图。(生画师巡视)

学生动手操作,反馈。

师:同样画的都是我们的教室,却不一样大,大家赞成谁的画法(故

意)?为什么?

生:可以利用前面所学的知识----图形的放缩,把教室的长和宽都缩

小一定的倍数在纸上表示出来。

师:你的想法很对,跟笑笑同学的想法一样。

师板书学生结果:逐步引出1:100

1学生汇报。

2学生讨论:

学生:图上1厘米长的线段表示实际100厘米。

3引出课题。

教师:这就是今天要学习的新知识——比例尺(板书课题)

二、合作探究,解决问题:

1.介绍各种比例尺的名称。

师:在地图上这些都叫做比例尺。根据板书教师介绍数字比例尺、文

字比例尺、线段比例尺。

2.认识比例尺的意义。

师:比例尺1:500是什么意思?

生1:就是图上1厘米的长度代表现实中的500厘米。

生2:实际距离是图上距离的500倍。

1生3:图上距离是实际距离的。 500

师:比例尺1:2200000是什么意思?

生1:就是地图上1厘米的距离相当于现实中的2200000厘米的距离。 生2:?

师:同学们讲得都对,那到底什么是比例尺?

学生回答,师评价并规范学生语言:对,比例尺就是图上距离与实际

距离的比。

小结比例尺的特点及应注意的问题。

三、练习巩固,检测反馈。

1、练习1、求比例尺在一幅地图上,用20cm的线段表示实际距离10

千米。求图上距离和实际距离的比?

学生独立做,集体反馈。

练习2:甲、乙两地相距320千米,画在比例尺是的地图上,应画多少厘米? 02040 60千米

练习3、4略

2、师:刚才我们画的教室平面图,你现在有办法让别人知道我们教室有多大了吗?

指导学生在画的长是9厘米、宽是6厘米的图上加上"比例尺1:100"。 在画的长是3厘米、宽是2厘米的图上加上"比例尺1:300"。

3、再次认识比例尺

<1>出示一个手表的零件,这些零件如果要你画出来,你觉得有什么困难。你有什么办法吗?

<2>电脑课件演示。

<3>求出这幅图的比例尺。说说与一般的地图上的比例尺有什么不同。

<4>讨论板书:

比例尺把实际距离缩小一定的倍数如1:30000000

把实际距离扩大一定的倍数如200:1

<5>引导讨论要将钢笔或杯子的设计图画出来,你选择怎么样的比例尺?

补充板书:

把实际距离按原来的大小画出来,比例尺就是1:1

四、合作总结,整理内化。

通过本节课的学习,你有哪些收获?

五、布置作业。

1、请大家把书翻到30页,量一量平面图中笑笑卧室的长是()厘米,宽是()厘米。

算一算笑笑卧室

实际的长是()米,宽是()米,面积是()平方米。

学生独立完成。

2、同学们,你们能自己确定比例尺,把自己家的平面图画下来吗?

上面内容就是为您整理出来的7篇《比例尺教学设计教案》,希望可以对您的写作有一定的参考作用。

推荐访问:比例尺 教学设计 教案 比例尺教学设计教案7篇 公开课《比例尺》教学设计 公开课《比例尺》教学设计及反思

Top