昆博公文网
当前位置 首页 >专题范文 > 教案设计 >

平行四边形教案12篇(完整文档)

发布时间:2023-07-07 20:45:03 来源:网友投稿

平行四边形教案第1篇教学目标:1.使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积.2.通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决下面是小编为大家整理的平行四边形教案12篇,供大家参考。

平行四边形教案12篇

平行四边形教案 第1篇

教学目标:

1.使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积.

2.通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力.

3.对学生进行辩诈唯物主义观点的启蒙教育.

教学重点:理解公式并正确计算平行四边形的面积.

教学难点:理解平行四边形面积公式的推导过程.

学具准备:每个学生准备一个平行四边形。

教学过程:

1、什么是面积?

2、请同学翻书到80页,请观察这两个花坛,哪一个大呢?假如这块长方形花坛的长是3米,宽是2米,怎样计算它的面积呢?

一、导入新课

根据长方形的面积=长×宽(板书),得出长方形花坛的面积是6平方米,平行四边形面积我们还没有学过,所以不能计算出平行四边形花坛的面积,这节课我们就学习的平行四边形面积计算。

二、讲授新课

(一)、数方格法

用展示台出示方格图

1、这是什么图形?(长方形)如果每个小方格代表1平方厘米,这个长方形的面积是多少?(18平方厘米)

2、这是什么图形?(平行四边形)每一个方格表示1平方厘米,自己数一数是多少平方厘米?

请同学认真观察一下,平行四边形在方格纸上出现了不满一格的,怎么数呢?可以都按半格计算。然后指名说出数得的结果,并说一说是怎样数的。

2、请同学看方格图填80页最下方的表,填完后请学生回答发现了什么?

小结:如果长方形的长和宽分别等于平行四边形的底和高,则它们的面积相等。

(二)引入割补法

以后我们遇到平行四边形的地、平行四边形的零件等等平行四边形的东西,都像这样数方格的方法来计算平行四边形的面积方不方便?那么我们就要找到一种方便、又有规律的计算平行四边形面积的方法。

(三)割补法

1、这是一个平行四边形,请同学们把自己准备的平行四边形沿着所作的高剪下来,自己拼一下,看可以拼成我们以前学过的什么图形?

2、然后指名到前边演示。

3、教师示范平行四边形转化成长方形的过程。

刚才发现同学们把平行四边形转化成长方形时,就把从平行四边形左边剪下的直角三角形直接放在剩下的梯形的右边,拼成长方形。在变换图形的位置时,怎样按照一定的规律做呢?现在看老师在黑板上演示。

①先沿着平行四边形的高剪下左边的直角三角形。

②左手按住剩下的梯形的右部,右手拿着剪下的直角三角形沿着底边慢慢向右移动。

③移动一段后,左手改按梯形的左部。右手再拿着直角三角形继续沿着底边慢慢向右移动,到两个斜边重合为止。

请同学们把自己剪下来的直角三角形放回原处,再沿着平行四边形的底边向右慢慢移动,直到两个斜边重合。(教师巡视指导。)

4、观察(黑板上在剪拼成的长方形左面放一个原来的平行四边形,便于比较。)

①这个由平行四边形转化成的长方形的面积与原来的平行四边形的面积比较,有没有变化?为什么?

②这个长方形的长与平行四边形的底有什么样的关系?

③这个长方形的宽与平行四边形的高有什么样的关系?

教师归纳整理:任意一个平行四边形都可以转化成一个长方形,它的面积和原来的平行四边形的面积相等,它的长、宽分别和原来的平行四边形的底、高相等。

5、引导学生总结平行四边形面积计算公式。

这个长方形的面积怎么求?(指名回答后,在长方形右面板书:长方形的面积=长×宽)

那么,平行四边形的面积怎么求?(指名回答后,在平行四边形右面板书:平行四边形的面积=底×高。)

6、教学用字母表示平行四边形的面积公式。

板书:S=a×h,告知S和h的读音。

说明在含有字母的式子里,字母和字母中间的乘号可以记作“”,写成ah,也可以省略不写,所以平行四边形面积的计算公式可以写成S=ah,或者S=ah。

(6)完成第81页中间的“填空”。

7、验证公式

学生利用所学的公式计算出“方格图中平行四边形的面积”和用数方格的方法求出的面积相比较“相等”,加以验证。

条件强化:求平行四边形的面积必须知道哪两个条件?(底和高)

(四)应用

1、学生自学例1后,教师根据学生提出的问题讲解。

3、判断,并说明理由。

(1)两个平行四边形的高相等,它们的面积就相等()

(2)平行四边形底越长,它的面积就越大()

4、做书上82页2题。

三、体验

今天,你学会了什么?怎样求平行四边形的面积?平行四边形的面积计算公式是怎样推导的?

四、作业

练习十五第1题。

五、板书设计

平行四边形面积的计算

长方形的面积=长×宽 平行四边形的面积=底×高

S=a×hS=ah或S=ah

平行四边形教案 第2篇

[教学目标]

1、知识与技能

直观地认识平行四边形

学会从各种平面图或实物中辨认平行四边形

培养初步的观察能力,空间观念和动手能力。

2、过程与方法

让学生在观察、操作、合作交流中探索新知

3、情感态度与价值观

渗透事物之间相互联系及转化的辩证唯物主义思想。

[教学重点]

引导学生直观的认识平行四边形

[教学难点]

引导学生通过直观感知抽象出平行四边形。

[教学关键]

在教学过程中,尽可能为学生提供观察、操作的机会,丰富学生的感性认识,使学生的感性认识升华为理性认识。

[教学方法]

演示法、观察法、操作法等。

[教具准备]

多媒体课件、可拉动的长方形框架、钉子板,方格纸

[学具准备]

可拉动的长方形框架,一张长方形的纸。

[教学过程]

一、复习引入

游戏引入(出示课件)

以“七个小矮人”中的开心果讲游戏规则,老师先发一些基本图形给学生,有三角形、圆形、长方形、正方形、平行四边形等,叫到什么图形的时候,大一部分同学就起立把图形举高让大家看,最后,只剩下平行四边形没有叫着,揭示课题:今天我们就来认识这一种新的四边形。

板书课题:平行四边形

二、探索新知

1、观察感知(课件展示)

教学例1:课件出示生活中的实物图形,引导学生观察在观察的基础上进行小组交流讨论,这些图形都有什么共同点?

交流抽象:在小组讨论的基础上进行全班交流,教师引导学生观察发现:以上的图形都含有,指出这种图形就是我们今天要认识的平行四边形,课件出示平行四边形的图和文字。

2、操作感知

教学例2

拉一拉:

⑴你能把长方形变成平行四边形吗?你是怎样变的?捏住长方形的两个对角,向相反的方向拉动,这样就变成了一个平行四边形。在学生独立操作、感知的基础上进行小组合作、交流:长方形有什么变化?

全班交流时引导学生发现:通过拉动长方形框架使它变成了平行四边形,在拉动的过程中,四条边的长短不变,所以平行四边形的对边相等;
四个角变了,原来是四个直角,拉成平行四边形后,四个角分别变成了两个锐角和两个钝角。

⑵说一说,长方形和平行四边形有什么区别?(长方形的四个角都是直角,平行四边形的角不是。初步理解长方形是一种特殊的平行四边形)

⑶说一说平行四边形有什么特点?

平行四边形有四条边,对边相等,有四个角,对角相等。

三、动手实践

1、围一围:

你能根据平行四边形的特点,在钉子板上围一个平行四边形吗?试试看

2、涂一涂:

把下面的图形是平行四边形的涂上自己喜欢的颜色(106页课堂活动的第2题)

3、剪一剪

⑴请在长方形纸上剪出一个平行四边形。(注意先要照着书上的方法,对折,再对折,然后把其中的两个长方形再对折,剪去其中的一个三角形。教师要引导学生怎样折纸)

四、知识拓展

让学生用七巧板拼摆出自己喜欢的各种图形,发展他们的创新思维和求异思维,同时也培养学生的空间观念。

五、全课小结

通过我们的观察、动手操作、小组合作等,我们已经知道了平行四边形的奥秘,你有什么收获?还有什么不懂得地方?

其实生活中无处不有我们的数学问题,只要我们做生活的有心人,你就会真正成为数学和生活的主人?

[板书设计]

平行四边形

有四条边,对边相等

有四个角,对角相等

平行四边形教案 第3篇

教学内容:人教版第九册 64 – 67页

说教材:
教材先给出方格上的平行四边形和长方形,从数图形中的方格引出平行四边形的面积。利用数方格的方法来计算面积仍然是一种计算面积的方法。遇到图形中边与边之间有不成直角的情况时,该怎样计算面积,学生还没有学过。,教材通过数的方法,转化的方法,可以把新知识转化为旧知识,从而使新问题得到解决。

教学重点:平行四边形面积的推导过程。

本课采用的教法:自学法 、 转化方法、小组合作法、实验法。

学法:1、自主学习法

2、小组合作探究学习法。

教学程序:

一、创设问题情景, 为新课作铺垫。

请同学们帮李师傅的一个忙,

求出下面的面积,你是怎样想的?3厘米

5厘米

二、突出学生主体地位,发展学生的创新思维。

首先采用自学课本64页。师提出问题,通过自学,同学们发现了什么,想到了什么?你猜到了什么?

有的同学说:长方形面积与平行四边形面积相等(数出来的)。

有的说:我用割补的方法把平形四边形拼成一个长方形,长方形的面积与平行四边形面积相等。还 有的说:我发现平行四边形的底相当与长方形的长,平行四边形的高相当长方形的宽。

有的说:我猜想平行四边形的面积等于底乘高。通过同学们发现与猜想

三、小组合作,培养学生的合作精神。

小组合作交流,动手操作并说出你的思考过程这样使学生能人人参与,个个思考。汇报交流结果(小组派出代表到前边演示操作过程边述说)学生甲:我沿着平行四边形的高剪下一个三角形补到平行四边形的右边,拼成一个长方形。长方形的长相当与平形四边形的底,宽相当与平行四边形的高。长方形面积与平行四边形的面积相等。我想平行四边形面积=底乘高

学生乙(与前边的内容大概相同复述一遍,就是平行四边形的高作在中间)

学生丁我还有一种方法,我将平行四边形沿着对角划一条线,分成两个面积相等三角形,虽然拼成还是一个原平行四边形。但学生争着说出与别人不同的方法,把自己的想法尽量展现在同学面前,其中不乏有闪光的思维亮点。

四例题独立完成,体现学生自己解决问题的能力。

例题自己解决, 学生切实体验到数学的应用价值,提高学生学习数学信心。

板书设计:

长方形面积==长乘宽

平行四边形面积=底乘高

s= a h

平行四边形教案 第4篇

【当堂检测】

1.(2008 年永州市).下列命题是假命题的是( )

A.两点之间,线段最短; B.过不在同一直线上的三点有且只有一个圆.

C.一组对应边相等的两个等边三角形全等; D.对角线相等的四边形是矩形.

2.如图,一个四边形花坛 ,被两条线段 分成四个部分,分别种上红、黄、紫、白四种花卉,种植面积依次是 ,若 , ,则有( )

A. B. C. D.都不对

3.(2009襄樊)如图,在平行四边形 中, 于E 且 是一元二次方程 的根,则平行四边形 的周长为( )

A. B. C. D.

4.(2009年南宁市)如图(1),在边长为5的正方形 中,点 、 分别是 、 边上的点,且 , .

(1)求 ∶ 的值;

(2)延长 交正方形外角平分线 ,如图2试判断 的大小关系,并说明理由;

(3)在图(2)的 边上是否存在一点 ,使得四边形 是平行四边形?若存在,请给予证明;
若不存在,请说明理由.

平行四边形教案 第5篇

【教学内容】教材第134页复习第12~15题。

【教学目标】

【教学重点 掌握求平行四边形、三角形和梯形的面积计算公式,会进行面积单难点】位的换算。

【教学过程】

一、揭示课题

我们今天复习的平行四边形、三角形和梯形面积的计算以及土地面积的有关知识。通过复习使学生进一步理解和掌握求平行四边形、三角形和梯形的面积计算,会进行土地面积计算和面积单位间的换算。

二、复习面积单位

1、(1)我们学过哪些面积单位?并按一定州顺序排列。

(2)每相邻两个面积单位间的进率各是多少?

2、练习做期末复习第12题。

学生做,并说计算过程。

三、复习的平行四边形、三角形和梯形的面积计算及其联系

1、说一说这三种图形面积计算公式是什么?并说一说每个图形的面积是怎样推导出来的?

2、我们在学习的平行四边形、三角形和梯形面积的计算时,都是把它们变成已学过的图形,这种学习方法叫做什么?(转化),以后学习其他图形的面积时,还是要用到这种方法。

3、把长方形、正方形、平行四边形、三角形和梯形之间的联系

用图表示出来。

(1) 学生画图:

(2)从图上可以看出,谁的面积是基础?

4、(1)练习做期末复习第14题。

学生计算后反馈。

(2)填空:

①一个三角形和一个平行四边形等底等高,如果三角形的面积是60平方米,那么平行四边形面积是( )平方米;
如果平行四边形面积是60平方米,那么三角形的面积是( )平方米。

②一个三角形底不变,高扩大3倍,面积( )倍。

③一个平行四边形底扩大16倍,高缩小2倍,面积就( )倍。

(3)应用题练习,期末复习第15题。

注意第(2)题单位不统一,先统一单位后再解答。

四、复习土地面积单位

1、(1)计算土地面积常用的单位有哪些?

(2)1平方千米,1公顷各有多大?

(3)测量土地时,一般用什么作长度单位?算出面积是多少平方米后,再换算成公顷或平方千米。

2、应用题:

(1)一个平行四边形果园,占地3公顷,它的底是400米,高是多少米?

学生做完后,师问:这题要注意什么?

(2)一个梯形的小麦田,上底长200米,下底长400米,高600米,它的面积是多少公顷?如果每公顷收小麦6000千克,这块小麦田能收小麦多少吨?

反馈时,说明最后结果单位要统一成吨。

3、综合练习:做期末复习第13题。

在书上做并说明理由。

五、全课总结

这节课复习了什么内容?我们复习了面积计算。进一步知道通过图形的转化,可以推导出平等四边形、三角形和梯形的面积计算公式,并且按它们面积计算公式可以分别计算出这些图形的面积是多少。

【作业设计】

补充

1、判断:

(1)两个完全一样的直角三角形能拼成平行四边形。( )

(2)两个面积相等的三角形一定等底等高。

( )

(3)62=62=12。

( )

(4)40公顷4平方千米。( )

2、一块平行四边形棉田,底400米,是高的2倍,共收籽棉8000千克,平均每公顷收籽棉多少克?

3、体育组跳箱的一面是梯形,它的上底是8分米,下底是1米,高11分米。求这个梯形的面积是多少平方分米?

平行四边形教案 第6篇

教学内容:

人教版五年级上册教材P87~88例1及练习十九第1、2、3题。

教材分析:

《平行四边形面积》教学是在学生已经掌握并能灵活运用长方形面积计算和平行四边形特征的基础上进行教学的,它将为后面学习梯形、三角形、圆的面积及立体图形的表面奠定基础,起到承上启下的作用。

学情分析:

学生虽然已经学习了长方形的面积计算方法和平行四边形的特征,但小学生的空间想象能力不够丰富,推导平行四边形面积计算公式有困难。因此,本节课将让学生充分运用已有的知识,全面参与新知识的发生、发展和形成。

教学目标:

知识与技能:掌握平行四边形的面积的计算公式并能解决实际问题。

过程与方法:让学生经历探索平行四边形面积公式的推导过程,通过操作、观察、比较、推理和概括能力,发展学生的空间观念,渗透转化的思想方法。

情感、态度与价值观:培养学生分析、综合、抽象、概括和解决实际问题的能力,增强学生学习数学的积极性,感受学习数学的乐趣。

教学重点:

探究平行四边形面积公式的推导过程,掌握平行四边形的面积的计算。

教学难点:

理解平行四边形的面积公式的推导过程。

教学方法:

迁移式、尝试、扶放式教学法

教学准备:

师:多媒体课件,练习纸。生:剪刀、直尺、平行四边形纸片若干个、练习本。

教学过程:

一、情境导入

1.谈话:为了创建文明城市,美化我们的生活环境,某社区准备要修建两个大花坛(出示教材第87页情境图)。这两个花坛分别是什么形状的?(生:长方形和平行四边形。)

2.让学生猜测:你觉得哪一个花坛大一些?多数学生认为不容易猜测,极少数同学猜长方形或平行四边形的花坛大。通过猜测,引导学生总结出:要想比较哪个花坛大,需要计算它们的面积。

3.提问:你会算它们的面积吗?

生:我们以前学过长方形的面积计算,只要量出长和宽,用“长×宽”计算面积。(板书:长方形的面积=长×宽)

师:非常好!那平行四边形的面积怎样计算呢?

4.揭示课题:今天我们就来学习和研究平行四边形的面积的计算。(板书课题:平行四边形的面积)

二、互动新授

(一)利用方格,初步探究。

1.想一想:我们可以用什么方法来计算平行四边形的面积呢?回想一下,以前学习长方形和正方形面积的时候,用过什么方法?

生:我们以前学习长方形和正方形面积的时候,用的是数方格的方法。

出示教材第87页方格图以及平行四边形和长方形。

(引导学生数一数有多少个小方格?每一个小方格是l平方米,不满一格的均按半格计算)

2.同桌交流方法并完成教材87页的表格。

3.汇报想法。谁愿意说说你数的方法?

4.根据填表的结果进行讨论:你发现了什么?

生:我发现平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,它们的面积也相等。

5.小结:平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,它们的面积也相等。这是一种巧合吗?看来平行四边形和长方形存在着非常密切的联系。

提问:通过数方格子的方法我们可以求出平行四边形的面积,那如果是一个很大的平行四边形田地还能用数格子的方法吗?(不能,很麻烦)

6.引导学生小结并质疑:计算平行四边形的面积用数格子的方法是很不方便的,用什么样的方法计算平行四边形的面积既方便又简单?平行四边形的面积与什么有关呢?接下来我们一起探究。

(二)动手操作,深入探究

1.介绍材料,老师为每组准备了4个不同的平行四边形和学习卡,大家可以结合教材第88页平行四边形面积的推导过程,探究平行四边形的面积计算。

2.活动要求:

(1)画一画,剪一剪,拼一拼,把平行四边形转化成学过的什么图形。

(2)观察转化后的图形和原来的平行四边形,有什么发现?(记录在学习卡上)。

(3)尝试推导出平行四边形的面积公式。

比一比,那个小组做得又快又好。

3.汇报交流。

让各小组展示不同的剪拼方法并说出剪拼过程。(多让几个学生上台展示)老师把不同剪拼方法粘贴在黑板上。

质疑:你们为什么要沿高剪呢?

生:因为沿平行四边形的一条高剪下,会出现直角,再平移到另一边才可以拼成长方形。

4.课件演示剪拼过程。

师:同学们做得又快又好,下面再次欣赏课件演示剪拼过程。

运用生动形象的课件演示,介绍平行四边形的底和高,让学生再次体验平行四边形转化成长方形的过程,加深对图形转化的理解。

5.引导学生小组思考讨论:

(1)拼成的长方形和原来的平行四边形比较,什么变了?什么没变?

(2)拼成的长方形的长和宽与原来平行四边形的底和高分别有什么关系?

(3)你能根据长方形的面积公式推导出平行四边形的面积公式吗?

学生可能会回答:我发现把平行四边形的面积转化成长方形后形状变了,但面积没有变,即长方形面积就等于平行四边形面积。我发现长方形的长就是平行四边形的底,宽就是平行四边形的高。

6.引导学生利用长方形的面积公式推导出平行四边形的面积公式:因为长方形的面积=长×宽,所以平行四边形的面积=底×高(板书)

追问:要求平行四边形的面积必须知道什么条件?

学生得出结论:必须知道平行四边形的底和对应的高。

7.教学用字母表示。

师:翻开教材自学第88页倒数第二自然段的内容。

师:你学到了什么?

生:如果用S表示平行四边形的面积,a表示平行四边形的底,用h表示平行四边形的高。那么,平行四边形的面积公式可以写成S=ah(板书)

8.课件演示,加深理解。

9.小结:刚才同学们利用剪拼方法把平行四边形变成长方形,运用了一种很重要的数学思想方法——“转化”。这种方法在数学中运用很多,在后面学习三角形、梯形的面积也会用到,同学们表现真棒!学习了新知识我们就要运用它解决实际问题了,大家敢接受挑战吗?(生齐答:敢)请看题目。

(三)应用公式,解决问题。

出示教材第88页例1.

学生读题,理解题意;
独立完成;
教师板书。

三、巩固新知,拓展提升。

1.计算出下面每个平行四边形的面积。

4.快速填表。

5.比较下列平行四边形的面积。引导学生发现:等底等高的平行四边形的面积相等。

练习设计意图:练习设计由易到难,层层递进,题量虽然不多,但涵盖了这节课所有的知识点,具有一定的弹性,使不同的学生得到不同的发展,从而进一步内化了新知。

四、回顾总结

师:这节课你学会了什么,有哪些收获?

五、布置作业:教材第89页练习十九第1、2、3题。

板书设计:

平行四边形的面积

长方形的面积=长×宽S=ah

↑ ↑ ↑ =6×4

平行四边的面积=底×高=24(m2)

S=ah

平行四边形教案 第7篇

教学目标:

1、使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积

2、通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力.

3、对学生进行辩诈唯物主义观点的启蒙教育.

教学重点:

理解公式并正确计算平行四边形的面积.

教学难点:

理解平行四边形面积公式的推导过程.

学具准备:

每个学生准备一个平行四边形。

教学过程:

一、导入新课。

1、请同学翻书到86页,仔细观察,找一找图中有哪些学过的图形?

2、好,下面谁来说一说你找到了哪些学过的图形?

3、请观察这两个花坛,哪一个大呢?假如这块长方形花坛的长是3米,宽是2米,怎样计算它的面积呢?根据长方形的面积=长×宽(板书),得出长方形花坛的面积是6平方米,平行四边形面积我们还没有学过,所以不能计算出平行四边形花坛的面积,这节课我们就学习了平行四边形面积计算。

二、民主导学

(一)、数方格法

用展示台出示方格图

1、这是什么图形?(长方形)如果每个小方格代表1平方厘米,这个长方形的面积是多少?(18平方厘米)

2、这是什么图形?(平行四边形)每一个方格表示1平方厘米,自己数一数是多少平方厘米?

请同学认真观察一下,平行四边形在方格纸上出现了不满一格的,怎么数呢?可以都按半格计算。然后指名说出数得的结果,并说一说是怎样数的。

3、请同学看方格图填87页最下方的表,填完后请学生回答发现了什么?

小结:如果长方形的长和宽分别等于平行四边形的底和高,则它们的面积相等。

(二)引入割补法

以后我们遇到平行四边形的地、平行四边形的零件等等平行四边形的东西,都像这样数方格的方法来计算平行四边形的面积方不方便?那么我们就要找到一种方便、又有规律的计算平行四边形面积的方法。

(三)割补法

1、这是一个平行四边形,请同学们把自己准备的平行四边形沿着所作的高剪下来,自己拼一下,看可以拼成我们以前学过的什么图形?

2、然后指名到前边演示。

3、教师示范平行四边形转化成长方形的过程。

刚才发现同学们把平行四边形转化成长方形时,就把从平行四边形左边剪下的直角三角形直接放在剩下的梯形的右边,拼成长方形。在变换图形的位置时,怎样按照一定的规律做呢?现在看老师在黑板上演示。

①先沿着平行四边形的高剪下左边的直角三角形。

②左手按住剩下的梯形的右部,右手拿着剪下的直角三角形沿着底边慢慢向右移动。

③移动一段后,左手改按梯形的左部。右手再拿着直角三角形继续沿着底边慢慢向右移动,到两个斜边重合为止。

请同学们把自己剪下来的直角三角形放回原处,再沿着平行四边形的底边向右慢慢移动,直到两个斜边重合。(教师巡视指导。)

4、观察(黑板上在剪拼成的长方形左面放一个原来的平行四边形,便于比较。)

①这个由平行四边形转化成的长方形的面积与原来的平行四边形的面积比较,有没有变化?为什么?

②这个长方形的长与平行四边形的底有什么样的关系?

③这个长方形的宽与平行四边形的高有什么样的关系?

教师归纳整理:任意一个平行四边形都可以转化成一个长方形,它的面积和原来的平行四边形的面积相等,它的长、宽分别和原来的平行四边形的底、高相等。

5、引导学生总结平行四边形面积计算公式。

这个长方形的面积怎么求?(指名回答后,在长方形右面板书:长方形的面积=长×宽)

那么,平行四边形的面积怎么求?(指名回答后,在平行四边形右面板书:平行四边形的面积=底×高。)

6、教学用字母表示平行四边形的面积公式。

板书:S=a×h

说明在含有字母的式子里,字母和字母中间的乘号可以记作“·”,写成a·h,也可以省略不写,所以平行四边形面积的计算公式可以写成S=a·h,或者S=ah。

(6)完成第81页中间的“填空”。

7、验证公式

学生利用所学的公式计算出“方格图中平行四边形的面积”和用数方格的方法求出的面积相比较“相等”,加以验证。

条件强化:求平行四边形的面积必须知道哪两个条件?(底和高)

三、检测导结

1、学生自学例1后,教师根据学生提出的问题讲解。

2、判断,并说明理由。

(1)两个平行四边形的高相等,它们的面积就相等()

(2)平行四边形底越长,它的面积就越大()

3、做书上82页2题。

4、小结

今天,你学会了什么?怎样求平行四边形的面积?平行四边形的面积计算公式是怎样推导的?

5、作业

练习十五第1题。

附:板书设计

平行四边形面积的计算

长方形的面积=长×宽

平行四边形的面积=底×高

S=a×h

S=a·h或S=ah

平行四边形教案 第8篇

教学目标

知识与技能:

在理解的基础上掌握平行四边形的面积计算公式,能正确的计算平行四边形的面积。

过程与方法:

通过操作,观察、比较,让学生经历平行四边形面积公式的推导过程,发展学生的空间观念,初步渗透转化的思想方法,培养学生的分析、综合、抽象、概括、推导能力和解决问题的能力。

情感态度与价值观:

通过数学活动,培养学生初步的推理能力和合作意识,让学生体会平行四边形面积计算在生活中的应用。

教学重难点

教学重点:

掌握平行四边形的面积计算公式,并能正确运用。

教学难点:

平行四边形面积计算公式的推导。

教学工具

多媒体课件,平行四边形纸片,剪刀,学具袋

教学过程

教学过程设计

1复习旧知

请同学们回忆一下我们学过的几何图形有哪些?并说说你会计算的图形的面积计算公式。(课件出示)

2情境引入

(一)、故事激趣

同学们喜欢看喜羊羊的动画片吗?据说羊村的牧草越来越少,所以,村长决定把草地分给小羊们自己管理和食用。懒羊羊分到的是一块长方形地,喜羊羊分到的是一块平行四边形地,他们认为自己的草地更少,争了起来。同学们,你们能不能动动脑筋,帮他们解决一下这个问题?看看哪块草地的面积更大?(课件出示两块草地)

(二)、学生思考、猜测

学生在猜测中明白:必须准确的知道两个图形的面积才能进行比较。可是学生只会计算长方形的面积,那么这节课我们就来研究平行四边形的面积,及时点出课题并板书课题:平行四边形的面积

3探究新知

(一)利用方格,初步探究

1、以前用数方格的方法得到了长方形和正方形的面积,那么,我们能不能用数方格的方法得到平行四边形的面积呢?我们一起来试一试。

课件出示:比较两个图形的大小,然后引进格子图。

师:请你们来数一数比较一下它们的面积是多少?(1小格是平方厘米,不满一小格的都按半格计算)

2、同桌交流方法

3、生汇报想法

4、通过数方格你发现了什么?

生:我发现平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的面积和长方形的面积也相等

5、小结(指图)通过数方格我们发现,平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的面积和长方形的面积也相等。这是一种巧合呢?还是平行四边形和长方形之间有某种特殊的联系呢?

如果,我用数方格的方法得到这个平行四边形的面积,现在我想得到一个很大的平行四边形花坛的面积,你认为数方格的方法怎么样?有没有合适的方格纸?那我们能不能找到一个方法,适用于计算所有平行四边形的面积呢?

(二)动手操作,深入探究

1、师提醒大家思考:怎样才能得到平行四边形的面积呢?能不能把它转化成我们以前学过的图形呢?

2、学生拿出准备好的学具:不同的平行四边形,剪刀,三角板等学具,动手操作,寻找平行四边形面积的计算方法。

师提示:刚刚有同学说可以把平行四边形变成长方形后再计算它的面积,那我们要怎么剪才能使平行四边形变成长方形呢?这其实就是计算平行四边行面积的第二个方法就是割补法。

(板书:割补法)

3、四人一小组,先通过自己的思考向组员介绍你研究方案;组员商议如何通过画一画、剪一剪等方法来进行操作研究;由组长进行操作,组员协助。有困难的小组可以请老师帮忙;比一比哪组同学能快速解决问题。

4、展示学生作品:不同的方法将平行四边形变成长方形。

提问:观察拼出的长方形和原来的平行四边形,你发现了什么?

平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的面积和长方形的面积也相等。

引导学生用字母来表示:S表示面积,a表示底,h表示高。那么面积公式就是S = ah

(边说边板书)

4学以致用

(一).课件出示出示例1:平行四边形花坛的底是6m,高是4m,它的面积是多少?我们根据什么公式来列式计算,学生试做,并说说解题方法,指名板书。

(板书:S=ah=6×4=24㎡)

(二).课件出示练习题,学生独立完成。

1.

2.有一块地近似平行四边形,底43米,高20.1米,面积是多少平方米?

3.填表

4.判断:

(1)平行四边形的底是7米,高是4米,面积是2 8米。

( )

(2) a=5分米,h=2米,S=100平方分米。

( )

5.下面对平行四边形面积的计算对吗?

6×3=18(平方米) ( )

6.下面对平行四边形面积的计算对吗?

8×7=56(平方分米) ( )

7.思考题:你有几种方法求下面图形的面积?

课后小结

回想一下刚才我们的学习过程,你有什么收获?

计算平行四边形的面积必须知道什么条件,平行四边形的面积公式是怎样推

板书

平行四边形的面积

长方形的面积=长×宽

↓ ↓ ↓

平行四边形的面积=底×高

平行四边形教案 第9篇

一、素质教育目标

(一)知识教学点

1.掌握平行四边形的判定定理1、2、3、4,并能与性质定理、定义综合应用.

2.使学生理解判定定理与性质定理的区别与联系.

3.会根据简单的条件画出平行四边形,并说明画图的依据是哪几个定理.

(二)能力训练点

1.通过“探索式试明法”开拓学生思路,发展学生思维能力.

2.通过教学,使学生逐步学会分别从题设或结论出发寻求论证思路的分析方法,进一步提高学生分析问题,解决问题的能力.

(三)德育渗透点

通过一题多解激发学生的学习兴趣.

(四)美育渗透点

通过学习,体会几何证明的方法美.

二、学法引导

构造逆命题,分析探索证明,启发讲解.

三、重点·难点·疑点及解决办法

1.教学重点:平行四边形的判定定理1、2、3的应用.

2.教学难点:综合应用判定定理和性质定理.

3.疑点及解决办法:在综合应用判定定理及性质定理时,在什么条件下用判定定理,在什么条件下用性质定理(强调在求证平行四边形时用判定定理,在已知平行四边形时用性质定理).

四、课时安排

2课时

五、教具学具准备

投影仪,投影胶片,常用画图工具

六、师生互动活动设计

复习引入,构造逆命题,画图分析,讨论证法,巩固应用.

七、教学步骤

【复习提问】

1.平行四边形有什么性质?学生回答教师板书

2.将以上性质定理分别用命题的形式叙述出来.

【引入新课】

用投影仪打出上述命题的逆命题.

上述第一个逆命题显然是正确的,因为它就是平行四边形的定义,所以它也是我们判定一个四边形是否为平行四边形的基本方法(定义法).

那么其它逆命题是否正确呢?如果正确就可得到另外的判定方法(写出命题).

【讲解新课】

1.平行四边形的判定

我们知道,平行四边形的对角相等,反过来对角相等的四边形是平行四边形吗?

如图1,在四边形中,如果,那么.

∴.

同理.

∴四边形是平行四边形,因此得到:

平行四边形判定定理1:两组对角分别相等的四边形是平行四边形.

类似地,我们还会想到,两组对边相等的四边形是平行四边形吗?

如图1,如果,,连结,则△ ≌△得到,,那么,,则四边形是平行四边形.

由此得到:

平行四边形判定定理2:两组对边分别相等的四边形是平行四边形.

(判定定理1、2的证明采用了探索式的证明方法,即根据题设和已有知识,经过推理得出结论,然后总结成定理).

我们再来证明下面定理

平行四边形判定定理3:对角线互相平分的四边形是平行四边形.

(该定理采用规范证法,如图1由学生自己证明,教师可引导学生用前面三种依据分别证明,借以巩固所学知识)

2.判定定理与性质定理的区别与联系

判定定理1、2、3分别是相应性质定理的逆定理,彼此之间分别为互逆定理,在使用时不得混淆.

例1已知:是对角线上两点,并且,如右图.

求证:四边形是平行四边形.

分析:因为四边形是平行四边形,所以对边平行且相等,由已知易证出两组三角形全等,用定义或判定定理1、2都可以,还可以连结交于利用判定定理3简单.

证明:(由学生用各种方法证明,可以巩固所学过的知识和作辅助线的方法,并比较各种证法的优劣,从而获得证题的技巧).

【总结、扩展】

1.小结:(投影打出)

(1)本堂课所讲的判定定理有

(2)在今后解决平行四边形问题时要尽可能地运用平行四边形的相应定理,不要总是依赖于全等三角形,否则不利于掌握新的知识.

2.思考题

教材P144B.3

八、布置作业

教材P142中7;
P143中8、9、10

九、板书设计

xxx

十、随堂练习

教材P138中1、2

补充

1.下列给出了四边形中、 、的度数之比,其中能判定四边形是平行四边形的是()

A.1:2:3:4 B.2:2:3:3

C.2:3:2:3 D.2:3:3:2

2.在下面给出的条件中,能判定四边形是平行四边形的是()

A.,B.,

C.,D.,

3.已知:在中,点、在对角线上,且.

求证:四边形是平行四边形.

平行四边形教案 第10篇

教学目标:

1、知识目标:经历动手操作、讨论、归纳等探讨平行四边形面积公式,并能用字母表示,会用公式计算平行四边形面积。

2、能力目标:在剪一剪、拼一拼中发展空间观念;
在想一想、看一看中初步感知“转化”的数学思想和方法。

3、过程与方法:通过观察、操作、测量、思考、讨论交流等数学活动,体会转化等数学方法,发展推理能力。

4、情感态度与价值观:使学生在探索平行四边形面积的计算方法中,获得成功的体验,形成积极的数学学习情感

教学重点:

让学生充分利用手中的学具,在动手操作推导平行四边形面积公式的过程中,理解并掌握平行四边形面积的计算方法,能正确计算平行四边形的面积。

教学难点:

让学生在推导和验证平行四边形面积公式的过程中,充分体验转化的数学思想,形成一定探究意识和能力,发展空间观念。

教学准备:

平行四边形卡片、剪刀、三角板

教学过程:

一、课前复习,回顾旧知

1、 长方形面积公式是什么?(勾起学生对已有知识的回顾,为学习平行四边形面积公式做铺垫)

2、 生:长方形面积=长×宽。

二、提出问题,导入新课

1、出示主题图:(看课本第86页的图)

(1)、发现了哪些图形?你会求哪些图形的面积?

(2)、故事引入

学校门前有两个大花坛,左边的是长方形的,右边的是平行四边形的。现在准备把花坛里面的草换成美丽的蝴蝶花,这个分别交给五(1)班和五(2)班负责。这时同学们争论开了,有的同学说长方形的面积大,有的说平行四边形的面积大,又有的同学说“还不是一样大嘛?”同学们,今天就让我们来帮帮他们判断一下哪个花坛的面积大。

师:我把花坛缩小成我手上的图形(出示缩小的两个图形,让学生比较)

比较方法:

1、叠起来比;
(比不了,形状不一样)

2、数方格比。

师:平行四边形的面积还有其它数法吗?(引出转化成长方形的方法)在实际问题上,这种方法行吗?不行,麻烦而且不实际,能不能像计算长方形面积那样计算出来呢?今天,就让我们来探讨平行四边形的面积的计算方法。(板书课题)

三、探索发现、推导公式

1、猜想:平行四边形的面积跟什么有关系呢?(板书:底和高;
两条边)

2、验证:科学是从猜想到验证的一个过程,现在就让我们用事实来说话吧。

课本中的同学们也忙开了,让我们来看看他们在干什么?打开88页,看看课本上半页的图。他们在干什么呢?(把平行四边形剪拼成长方形)

现在,同学们也用剪拼的办法,把平行四边形转化成长方形,每个学习小组长的手上都有一个平行四边形,每个小组的同学合作,剪一剪,拼一拼,看看那组的同学合作最好,先来看看我们的导学提纲。

小组根据导学提纲进行合作学习

(1)怎样把平行四边形纸片剪一刀,拼成一个长方形呢?(剪前,小组要先讨论出怎样剪,拼成的才一定是长方形。)

(2)讨论:平行四边形转化成长方形后面积变了吗?

(3)讨论:转化成的长方形的长和平行四边形的底是否相等?

(4)讨论:转化成的长方形的宽和平行四边形的高是否相等?

3、学生操作验证

师:这个剪拼的任务就交给你们了。

4、交流汇报

(1)生1:先在平行四边形上画一条高,沿着高剪开,把平行四边形分成了一个三角形,一个梯形,然后把三角形向右平移,拼成了长方形。

生2:在平行四边形上画一条高,然后沿高剪开,分成了两个梯形,然后把左边的梯形向右平移,拼成了长方形。

师:这样的变化过程在数学上叫做“转化”,平行四边形转化成长方形。

(2)面积没变,只是形状变了。

(3)长方形的长和平行四边形的底相等。

(4)长方形的宽和平行四边形的高相等。

(5)平行四边形的面积怎样算?

5、集体推导

齐看演示剪拼的过程,学生自己口头作答,再齐读。(老师边讲解边板书)

一个平行四边形沿着任意一条高剪开,都可以拼成一个(长方形),它的面积与平行四边形的面积(相等),这个长方形的长与平行四边形的(底)相等,这个长方形的宽与平行四边形的(高)相等,因为长方形的面积=(长 X 宽),所以平行四边形的面积=(底 X 高)。

板书:长方形的面积 = 长 X 宽

↓ ↓ ↓

平行四边形的面积 = 底 X 高

6、字母表示公式

师:如果用字母S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形的面积计算公式可以写成S=a×h(师板书)(在课本划出公式,读公式)

7、回到学生们的猜想,平行四边形的面积是跟底和高有关系。我们也可以用计算的方法来求出平行四边形的面积了。

师:同学们多了不起啊,自己实践得出了真理,科学就是这样一步步的向前推进的。

8、运用公式:学习88页例1

师:让我们回到学校门前的花坛吧。

出示题目,学生读题,学生口答,老师板书过程。

9、回到同学们的争论,两个花坛的面积是一样大的,科学实践还是解决争论的最好办法。

三、巩固拓展

1、课本89:第1题。(学生在练习本中解答)

2、口答:下面的平行四边形的面积是多少平方厘米?

3、选择题:(区分对应的底和高)

4、实际应用:课本89:第4题第1个图(先量出底和高,再计算) 求楼梯扶手的面积。

5、口答

(1)平行四边形的底不变,高扩大2倍,面积就( )。

(2)平行四边形的高不变,底缩小2倍,面积就( )。

(3)平行四边形的底扩大2倍,高也扩大2倍,面积( )。

四、总结全课,提高认识

1、通过今天的学习,你有那些收获?还有那些遗憾的地方?

2、今天,我们用转化割补法学习了平行四边形面积计算,希望同学们把它运用到今后的学习生活中去,真正做到学以致用。

板书设计:

平行四边形的面积

长方形的面积 = 长×宽

↓ ↓ ↓

平行四边形的面积= 底×高

S = a×h

平行四边形教案 第11篇

课型:

授课

教学分析:

本节课是在学生已经认识长方形、正方形的基础上进行教学。重点是让学生通过亲自观察、动手测量、比较掌握长方形、正方形的特点,初步认识平行四边形。

教学目标:

(一)知识与技能:

引导学生观察长方形、正方形的边、角的特点,认识长方形和正方形的共性及各自的特性。会在方格纸上画长方形、正方形,并认识平行四边形。

(二)过程与方法:

学生通过观察比较、动手操作、交流合作等活动发现长方形和正方形的特点,积累感性认识,初步认识平行四边形。

(三)情感态度价值观:

培养学生积极参与的学习品质,使学生获得成功的体验,感受教学与日常生活的密切联系,树立学好数学的信心。

教学策略:

创设情景、动手实践、交流合作。

教具学具:

多媒体课件、长方形、正方形、格子纸、三角板。

教学流程:

一、创设情景,提出问题。

今天,我们的好朋友智慧星要带领大家到图形王国去参观。参观之前提一个小小的要求,请你仔细观察、多动脑筋。(多媒体演示图片)你能说出这些事物中你认识的图形吗?(抽出长方形、正方形。引出课题)

二、协作探索,研究问题。

1、教学长方形、正方形。

(1)多媒体出示长方形、正方形:请大家仔细观察他们各有几条边,几个角?

(2)教学对边的概念:

在生活中我们把两个人面对面叫做对面,在长方形中上下两条边我们把它们叫做对边、左右两条边也叫对边。(多媒体演示)

(3)小组合作研究长方形、正方形的特点。

下面请大家利用你手中的工具量一量、折一折、比一比,和组内同学说一说。

长方形的对边和正方形的边有什么特点,角有什么特点?

(4)指名汇报,并演示自己发现的过程。

共同总结:长方形和正方形都是四条边围成的图形,它们都是四边形,它们的每个角都是直角,长方形的对边相等,正方形的四条边都相等。

(5)在方格纸上画出长方形、正方形

2、教学平行四边形。

(1)多媒体演示:在生活中我们还会看到这样一些图形,它们是长方形吗?是正方形吗?

我们把这样的四边形叫做平行四边形。

(2)平行四边形的特点:

出示格子图中平行四边形:引导学生观察,用数格子的方法数一数你发现平行四边形的对边有什么特点?

(3)总结:平行四边形有四条边,四个角,对边相等。

(4)动手操作:拿出活动的四边形:拉动之后你发现了什么?

动手操作

三、运用知识,解决问题。

1、猜一猜。(多媒体演示)

2、找一找。(多媒体演示)

3、说一说。

四、总结。

你今天从智慧星那里学到了什么?

板书设计:

长方形正方形和平行四边形

边:4条

4条4条

对边相等全都相等对边相等

角:4个直角4个直角4个

平行四边形教案 第12篇

教学目标:

1.使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积

2.通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力.

3.对学生进行辩诈唯物主义观点的启蒙教育

教学重点:

理解公式并正确计算平行四边形的面积.

教学难点:

理解平行四边形面积公式的推导过程.

学具准备:

每个学生准备一个平行四边形。

教学过程:

一、导入新课。

1.请同学翻书到86页,仔细观察,找一找图中有哪些学过的图形?

2.好,下面谁来说一说你找到了哪些学过的图形?

3.请观察这两个花坛,哪一个大呢?假如这块长方形花坛的长是3米,宽是2米,怎样计算它的面积呢?根据长方形的面积=长宽(板书),得出长方形花坛的面积是6平方米,平行四边形面积我们还没有学过,所以不能计算出平行四边形花坛的面积,这节课我们就学习的平行四边形面积计算。

二、民主导学

(一)、数方格法

用展示台出示方格图

1.这是什么图形?(长方形)如果每个小方格代表1平方厘米,这个长方形的面积是多少?(18平方厘米)

2.这是什么图形?(平行四边形)每一个方格表示1平方厘米,自己数一数是多少平方厘米?

请同学认真观察一下,平行四边形在方格纸上出现了不满一格的,怎么数呢?可以都按半格计算。然后指名说出数得的结果,并说一说是怎样数的。

3.请同学看方格图填87页最下方的表,填完后请学生回答发现了什么?

小结:如果长方形的长和宽分别等于平行四边形的底和高,则它们的面积相等。

(二)引入割补法

以后我们遇到平行四边形的地、平行四边形的零件等等平行四边形的东西,都像这样数方格的方法来计算平行四边形的面积方不方便?那么我们就要找到一种方便、又有规律的计算平行四边形面积的方法。

(三)割补法

这是一个平行四边形,请同学们把自己准备的平行四边形沿着所作的高剪下来,自己拼一下,看可以拼成我们以前学过的什么图形?

推荐访问:平行 教案 平行四边形教案12篇 平行四边形教案(精选12篇) 《平行四边形》教案

Top